Citation: Jian-Hao LI, Han SONG, Zheng-Yan ZHANG, Zhen-Xiao PAN, Xin-Hua ZHONG. Preparation of High-Efficiency Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells by ZnS/SiO2 Synergistic Photoanode Coating[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 84-92. doi: 10.11862/CJIC.2022.025 shu

Preparation of High-Efficiency Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells by ZnS/SiO2 Synergistic Photoanode Coating

Figures(8)

  • The synergistic photoanode coating strategy was applied to inhibit the charge recombination processes at the photoanode/electrolyte interface and improve the photovoltaic performance of Zn-Cu-In-Se (ZCISe) quantum dotsensitized solar cells (QDSC). On the surface of ZCISe QD-sensitized photoanode, ZnS and SiO2 layers were successively coated by the solution route to form double passivation coating layers. This double-layer treatment offers more effective charge recombination inhibition than the traditional ZnS single coating layer, thus obtaining higher photovoltaic performance for the resulting QDSC. The results indicated that with the coating of ZnS/SiO2 double passivation layers, the efficiency was increased from 12.17% corresponding to cells with the traditional single ZnS coating to 13.23%. This is mainly due to the effective inhibition of the charge recombination processes at the photoanode/electrolyte interface, and the charge collection efficiency is improved accordingly.
  • 加载中
    1. [1]

      Huang F, Zhang Q F, Xu B K, Hou J, Wang Y, Massé R C, Peng S L, Liu J S, Cao G Z. A Comparison of ZnS and ZnSe Passivation Layers on CdS/CdSe Co-sensitized Quantum Dot Solar Cells[J]. J. Mater. Chem. A, 2016,4(38):14773-14780. doi: 10.1039/C6TA01590E

    2. [2]

      Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S. A New Passivation Route Leading to over 8% Efficient PbSe QuantumDot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals[J]. Adv. Mater., 2017,29(41)1703214. doi: 10.1002/adma.201703214

    3. [3]

      Liu J, Liu J Q, Wang C L, Ge Z W, Wang D L, Xia L X, Guo L, Du N, Hao X T, Xiao H D. A Novel ZnS/SiO2 Double Passivation Layers for the CdS/CdSe Quantum Dots Co-sensitized Solar Cells Based on Zinc Titanium Mixed Metal Oxides[J]. Sol. Energy Mater. Sol. Cells, 2020,208110380. doi: 10.1016/j.solmat.2019.110380

    4. [4]

      Zhang H, Fang W J, Wang W R, Qian N S, Ji X H. Highly Efficient Zn -Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid[J]. Mater. Interfaces, 2019,11(7):6927-6936. doi: 10.1021/acsami.8b18033

    5. [5]

      Regulacio M D, Han M Y. Multinary Ⅰ-Ⅲ-Ⅵ2 and Ⅰ2-Ⅱ-Ⅳ-Ⅵ4 Semiconductor Nanostructures for Photocatalytic Applications[J]. Acc. Chem. Res, 2016,49(3):511-519. doi: 10.1021/acs.accounts.5b00535

    6. [6]

      Du J, Singh R, Fedin I, Fuhr A S, Klimov V I. Spectroscopic Insights into High Defect Tolerance of Zn: CuInSe2 Quantum - Dot - Sensitized Solar Cells[J]. Nat. Energy, 2020,5(5):409-417. doi: 10.1038/s41560-020-0617-6

    7. [7]

      Song H, Lin Y, Zhang Z Y, Rao H S, Wang W R, Fang Y P, Pan Z X, Zhong X H. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition[J]. J. Am. Chem. Soc, 2021,143(12):4790-4800. doi: 10.1021/jacs.1c01214

    8. [8]

      Wang G S, Wei H Y, Shi J J, Xu Y Z, Wu H J, Luo Y H, Li D M, Meng Q B. Significantly Enhanced Energy Conversion Efficiency of CuInS2 Quantum Dot Sensitized Solar Cells by Controlling Surface Defects[J]. Nano Energy, 2017,35:17-25. doi: 10.1016/j.nanoen.2017.03.008

    9. [9]

      Zhang L L, Pan Z X, Wang W, Du J, Ren Z W, Shen Q, Zhong X H. Copper Deficient Zn-Cu-In-Se Quantum Dot Sensitized Solar Cells for High Efficiency[J]. J. Mater. Chem. A, 2017,5(40):21442-21451. doi: 10.1039/C7TA06904A

    10. [10]

      Zhao K, Pan Z X, Zhong X H. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells[J]. J. Phys. Chem. Lett., 2016,7(3):406-417. doi: 10.1021/acs.jpclett.5b02153

    11. [11]

      Mora - Seró I. Current Challenges in the Development of Quantum Dot Sensitized Solar Cells[J]. Adv. Energy Mater., 2020,10(33)2001774. doi: 10.1002/aenm.202001774

    12. [12]

      Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Grätzel M. High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires[J]. ACS Nano, 2010,4(12):7644-7650. doi: 10.1021/nn1024434

    13. [13]

      Mora - Seró I, Giménez S, Fabregat - Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J. Recombination in Quantum Dot Sensitized Solar Cells[J]. Acc. Chem. Res., 2009,42(11):1848-1857. doi: 10.1021/ar900134d

    14. [14]

      Shalom M, Dor S, Rühle S, Grinis L, Zaban A. Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating[J]. J. Phys. Chem. C, 2009,113(9):3895-3898. doi: 10.1021/jp8108682

    15. [15]

      Roelofs K E, Brennan T P, Dominguez J C, Bailie C D, Margulis G Y, Hoke E T, Mcgehee M D, Bent S F. Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in SolidState CdS Quantum Dot - Sensitized Solar Cells[J]. J. Phys. Chem. C, 2013,117(11):5584-5592. doi: 10.1021/jp311846r

    16. [16]

      Prasittichai C, Avila J R, Farha O K, Hupp J T. Systematic Modulation of Quantum (Electron) Tunneling Behavior by Atomic Layer Deposition on Nanoparticulate SnO2 and TiO2 Photoanodes[J]. J. Am. Chem. Soc., 2013,135(44):16328-16331. doi: 10.1021/ja4089555

    17. [17]

      Tachan Z, Hod I, Shalom M, Grinis L, Zaban A. The Importance of the TiO2/Quantum Dots Interface in the Recombination Processes of Quantum Dot Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2013,15(11):3841-3845. doi: 10.1039/c3cp44719g

    18. [18]

      Zhao K, Pan Z X, Mora-Seró I, Cánovas E, Wang H, Song Y, Gong X Q, Wang J, Bonn M, Bisquert J, Zhong X H. Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells beyond 8% by Recombination Control[J]. J. Am. Chem. Soc., 2015,137(16)56025609.  

    19. [19]

      Zhang L L, Rao H S, Pan Z X, Zhong X H. ZnSxSe1-x Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces, 2019,11(44):41415-41423. doi: 10.1021/acsami.9b14579

    20. [20]

      Du J, Du Z L, Hu J S, Pan Z X, Shen Q, Sun J K, Long D H, Dong H, Sun L, Zhong X H, Wan L J. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%[J]. J. Am. Chem. Soc., 2016,138(12):4201-4209. doi: 10.1021/jacs.6b00615

    21. [21]

      Song H, Lin Y, Zhou M S, Rao H S, Pan Z X, Zhong X H. Zn-Cu-In-S-Se Quinary"Green"Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%[J]. Angew. Chem. Int. Ed., 2021,60(11):6137-6144. doi: 10.1002/anie.202014723

  • 加载中
    1. [1]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    20. [20]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

Metrics
  • PDF Downloads(4)
  • Abstract views(1105)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return