Citation: Si-Chen WU, Yi-Ting GUO, Shu-Hang LIU, Zhen-Nan LIU, Fang-Jun SHI, Ning LI, Jie XU, Feng GAO. Fabrication and Dielectric Properties of Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride)-Poly(methyl methacrylate) Composites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 119-126. doi: 10.11862/CJIC.2022.012 shu

Fabrication and Dielectric Properties of Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride)-Poly(methyl methacrylate) Composites

  • Corresponding author: Feng GAO, gaofeng@nwpu.edu.cn
  • Received Date: 6 August 2021
    Revised Date: 8 November 2021

Figures(7)

  • Ba0.6Sr0.4TiO3 (BST)/poly(vinylidene fluoride) (PVDF)-poly(methyl methacrylate) (PMMA) composite films were prepared by tape casting and hot pressing. The effects of PMMA content on the phase structure and electrical properties of the composites were studied. The results showed that the BST phase was uniformly dispersed in the polymer matrix. The interface between the two polymers is not clear, which is attributed to the good compatibility between PMMA and PVDF. With the increase of PMMA content, the dielectric constant of the composites is negatively correlated with the breakdown strength and dielectric tunability. BST/PVDF-PMMA15 composite with PMMA content (volume fraction) of 15% showed the best dielectric properties with the dielectric constant of 23.2, the dielectric loss of 0.07, the breakdown strength of 1 412 kV·cm-1, and the dielectric tunability was 26.2% under the DC bias of 550 kV·cm-1.
  • 加载中
    1. [1]

      Sebastian M T, Jantunen H. Polymer-Ceramic Composites of 0-3 Con-nectivity for Circuits in Electronics: A Review[J]. Int. J. Appl. Ceram.Technol., 2010,7(4):415-434.  

    2. [2]

      Zhang L, Xiao D Q, Ma J. Dielectric Properties of PVDF/Ag/BaTiO3 Composites[J]. Ferroelectrics, 2013,455:77-82. doi: 10.1080/00150193.2013.844011

    3. [3]

      Bai Y, Bharti V, Cheng Z Y, Xu H S, Zhang Q M. High-Dielectric-Constant Ceramic-Powder Polymer Composites[J]. Appl. Phys. Lett., 2000,76(25):3804-3806. doi: 10.1063/1.126787

    4. [4]

      He H, Xu Y B. A Unified Equation for Predicting the Dielectric Constant of a Two Phase Composite[J]. Appl. Phys. Lett., 2014,104(6)062906. doi: 10.1063/1.4865094

    5. [5]

      Zhang X H, Zhao S D, Wang F, Ma Y, Wang L, Chen D, Zhao C, Yang W. Improving Dielectric Properties of BaTiO3/Poly(vinylidene fluoride) Composites by Employing Core-Shell Structured BaTiO3@Poly(methyl methacrylate) and BaTiO3@Poly(trifluoroethyl methac-rylate) Nanoparticles[J]. Appl. Surf. Sci., 2017,403:71-79. doi: 10.1016/j.apsusc.2017.01.121

    6. [6]

      Tang Y F, Chen L, Duan Z H, Zhao K, Wu Z X. Graphene/Barium Titanate/Polymethyl methacrylate Bio-Piezoelectric Composites for Biomedical Application[J]. Ceram. Int., 2019,46(5):6567-6574.  

    7. [7]

      ZHANG Z, SHEN D, XIONG X Y, YANG H, ZHANG Q L, SHEN Q H. Preparation and Dielectric Properties of Ag-Loaded KTa1-xNbxO3-BaTiO3 Particle Doped P(VDF-TrFE-CTFE) Composite[J]. Chinese J.Inorg. Chem., 2020,36(11):2048-2054. doi: 10.11862/CJIC.2020.228 

    8. [8]

      Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S N. Achieving High Energy Density and Low Loss in PVDF/BST Nanodielectrics with Enhanced Structural Homogeneity[J]. ACS Appl. Mater. Interfaces, 2018,10(34):29038-29047. doi: 10.1021/acsami.8b10354

    9. [9]

      Wu Z J, Yang Z Y, Zhang J Q, Qu X X. Fabrication and Characteriza-tion of the Piezoelectric Ceramic-Polymer Composites[J]. Int. J. Appl.Ceram. Technol., 2016,13(4):690-696. doi: 10.1111/ijac.12550

    10. [10]

      Bovtun V, Kempa M, Nuzhnyy D, Petzelt J, Borisova O, Machulian-skyi O, Yakymenko Y. Microwave Absorbing and Shielding Proper-ties of Inhomogeneous Conductors and High-Loss Dielectrics[J]. Ferroelectrics, 2018,532:57-66. doi: 10.1080/00150193.2018.1499404

    11. [11]

      Hu G X, Gao F, Kong J, Yang S J, Zhang Q Q, Liu Z T, Zhang Y, Sun H J. Preparation and Dielectric Properties of Poly(vinylidene fluoride)/Ba0.6Sr0.4TiO3 Composites[J]. J. Alloys Compd., 2015,619:686-692. doi: 10.1016/j.jallcom.2014.09.005

    12. [12]

      Zhang Q Q, Gao F, Zhang C C, Wang L, Wang M, Qin M J, Hu G X, Kong J. Enhanced Dielectric Tunability of Ba0.6Sr0.4TiO3/Poly(vinyli-dene fluoride) Composites via Interface Modification by Silane Coupling Agent[J]. Compos. Sci. Technol., 2016,129:93-100. doi: 10.1016/j.compscitech.2016.04.016

    13. [13]

      Pawde S M, Deshmukh K. Investigation of the Structural, Thermal, Mechanical, and Optical Properties of Poly(methyl methacrylate) and Poly(vinylidene fluoride) Blends[J]. J. Appl. Polym. Sci., 2009,114(4):2169-2179. doi: 10.1002/app.30641

    14. [14]

      Narula G K, Rashmi , Pillai P K C. Investigations of Solution-Mixed PVDF/PMMA Polyblends by Thermal, Structural, and Dielectric Techniques[J]. J. Macromol. Sci. Part B Phys., 1989,28:25-49. doi: 10.1080/00222348908212326

    15. [15]

      Kobayshi M, Tashiro K, Tadokoro H. Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride)[J]. Macromolecules, 1975,8(2):158-170. doi: 10.1021/ma60044a013

    16. [16]

      Olabisi O, Robeson L M, Shaw M T. Polymer-Polymer Miscibility. New York: Academic Press, 1979: 119-135

    17. [17]

      Huang C, Zhang L. Miscibility of Poly(vinylidene fluoride) and Atactic Poly(methyl methacrylate)[J]. J. Appl. Polym. Sci., 2010,92:1-5.  

    18. [18]

      FANG J X, YIN Z W. Dielectric Physics. Beijing: Science Press, 1989: 16-34

    19. [19]

      Zhang Q Q, Gao F, Hu G X, Zhang C C, Wang M, Qin M J, Wang L. Characterization and Dielectric Properties of Modified Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride) Composites with High Dielectric Tunability[J]. Compos. Sci. Technol., 2015,118:94-100. doi: 10.1016/j.compscitech.2015.08.013

    20. [20]

      Weibull W. A Statistical Distribution Function of Wide Applicability[J]. J.Appl. Mech., 1951,18:293-297. doi: 10.1115/1.4010337

    21. [21]

      Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K. High-k Polymer Nanocomposites with 1D Filler for Dielectric and Energy Storage Applications[J]. Prog. Mater. Sci., 2019,100:187-225. doi: 10.1016/j.pmatsci.2018.10.003

    22. [22]

      Sengupta L C, Sengupta S. Breakthrough Advances in Low Loss, Tunable Dielectric Materials[J]. Mater. Res. Innovations, 1999,2(5):278-282. doi: 10.1007/s100190050098

    23. [23]

      Wang L, Gao F, Xu J, Zhang K N, Wang M, Qin M J. Fabrication, Characterisation and Dielectric Properties of KH550 Modified BST/PVDF Nanocomposites with High Dielectric Strength[J]. High Voltage, 2016,1(4):158-165. doi: 10.1049/hve.2016.0065

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    18. [18]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(7)
  • Abstract views(1706)
  • HTML views(555)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return