Performance and Mechanism of Cu, C Co-loaded ZnO Photocatalyst for Nitrogen Fixation
- Corresponding author: Wei-Rong ZHAO, wrzhao@vip.163.com
Citation:
Ying-Ying MA, Yi-Fan LIU, Shan-Shan GUO, Lu-Lu YAO, Chen-Yang HUANGFU, Wei-Rong ZHAO. Performance and Mechanism of Cu, C Co-loaded ZnO Photocatalyst for Nitrogen Fixation[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(2): 274-284.
doi:
10.11862/CJIC.2022.007
Feng Y L, Zhang Z S, Zhao K, Lin S L, Li H, Gao X. Photocatalytic Nitrogen Fixation: Oxygen Vacancy Modified Novel Micro-Nanosheet Structure Bi2O2CO3 with Band Gap Engineering[J]. J. Colloid Interface Sci., 2021,583:499-509. doi: 10.1016/j.jcis.2020.09.089
CHEN Q, ZHOU Y, ZHU J X, LIANG T T, HUANG R B, CHEN A M. Photocatalytic Synthesis of Ammomia over Fe2O3/ZnO with Rich Surface Oxygen Vacancy[J]. Chinese J. Inorg. Chem., 2020,36(2):426-434.
Zhejiang University. A Method for Photocatalytic Forliar Fertilization: CN202010402020.7. 2020-08-14.
Liu W, Wang M L, Xu C X, Chen S F. Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties[J]. Chem. Eng. J., 2012,209:386-393. doi: 10.1016/j.cej.2012.08.033
AI S Y, JIN L T, ZHOU J, LU F S. Preparation and Photocatalytic Property of ZnO Nanorods with Uniform Morphology[J]. Chinese J. Inorg. Chem., 2005,21(2):270-272. doi: 10.3321/j.issn:1001-4861.2005.02.024
Duan Y L, Ma J, Dai J N, Qiang L S, Xue J Q. Morphology Engineering of ZnO Nanostructures for Enhanced Photocatalytic Efficiency of In(OH)3/ZnO Nanocomposite[J]. Appl. Surf. Sci., 2021,535:147657-147666. doi: 10.1016/j.apsusc.2020.147657
Jang E S, Won J H, Hwang S J, Choy J H. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity[J]. Adv. Mater., 2006,18(24):3309-3312. doi: 10.1002/adma.200601455
CHEN Y, YANG X Y, ZHANG P, LIU D S, GUI J Z. Noble Metal-Supported Rod-like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys.-Chim. Sin., 2017,33(10):2082-2091. doi: 10.3866/PKU.WHXB201705176
ZHONG W, XIA Y F, ZHAI H L, GAO Y. Preparation by Co-precipitation Method and Photocatalytic Performances on the Degradation of Dyes of Ce3+-Doped Nano-ZnO[J]. Chinese J. Inorg. Chem., 2020,36(1):40-52.
Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A. Magnetically Separable Nanocomposites Based on ZnO and Their Applications in Photocatalytic Processes: A Review[J]. Crit. Rev. Env. Sci. Technol., 2018,48(10/12):806-857.
Li B X, Liu T X, Wang Y F, Wang Z F. ZnO/Graphene-Oxide Nanocomposite with Remarkably Enhanced Visible-Light-Driven Photocatalytic Performance[J]. J. Colloid Interface Sci., 2012,377:114-121. doi: 10.1016/j.jcis.2012.03.060
Kumar S G, Rao K S R K. Comparison of Modification Strategies Towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO)[J]. Appl. Surf. Sci., 2017,391:124-148. doi: 10.1016/j.apsusc.2016.07.081
Ansari S A, Khan M M, Ansari M O, Lee J, Cho M H. Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag-ZnO Nanocomposite[J]. J. Phys. Chem. C, 2013,117(51):27023-27030. doi: 10.1021/jp410063p
Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Cost-Effective and Eco-Friendly Synthesis of Novel and Stable N-Doped ZnO/g-C3N4 Core-Shell Nanoplates with Excellent Visible-Light Responsive Photocatalysis[J]. Nanoscale, 2014,6(9):4830-4842. doi: 10.1039/c3nr05271k
Ahmad I, Akhtar M S, Ahmed E, Ahmad M, Naz M Y. Lu Modified ZnO/CNTs Composite: A Promising Photocatalyst for Hydrogen Evolution under Visible Light Illumination[J]. J. Colloid Interface Sci., 2021,584:182-192. doi: 10.1016/j.jcis.2020.09.116
Hezam A, Wang J, Drmosh Q A, Karthik P, Bajiri M A, Namratha K, Zare M, Lakshmeesha T R, Shivanna S, Cheng C, Neppolian B, Byrappa K. Rational Construction of Plasmonic Z-Scheme Ag-ZnO-CeO2 Heterostructures for Highly Enhanced Solar Photocatalytic H2 Evolution[J]. Appl. Surf. Sci., 2021,541:1-11.
He Y M, Wang Y, Zhang L H, Teng B T, Fan M H. High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst[J]. Appl. Catal. B, 2015,168:1-8.
Zhang P, Li B B, Zhao Z B, Yu C, Hu C, Wu S J, Qiu J S. Furfural-Induced Hydrothermal Synthesis of ZnO@C Gemel Hexagonal Microrods with Enhanced Photocatalytic Activity and Stability[J]. ACS Appl. Mater. Interfaces, 2014,6(11):8560-8566. doi: 10.1021/am501423j
Zhang P, Yang X Y, Jin Z Z, Gui J Z, Tan R, Qiu J S. Insight into the Impact of Surface Hydrothermal Carbon Layer on Photocatalytic Performance of ZnO Nanowire[J]. Appl. Catal. A, 2019,583117145. doi: 10.1016/j.apcata.2019.117145
Ramirez A E, Montero-Munoz M, Lopez L L, Ramos-Ibarra J E, Coaquira J A H, Heinrichs B, Paez C A. Significantly Enhancement of Sunlight Photocatalytic Performance of ZnO by Doping with Transition Metal Oxides[J]. Sci. Rep., 2021,11(1):2804-2804. doi: 10.1038/s41598-020-78568-9
Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Transition Metal Oxide Loaded ZnO Nanorods: Preparation, Characterization and Their UV-Vis Photocatalytic Activities[J]. Sep. Purif. Technol., 2014,132:378-387. doi: 10.1016/j.seppur.2014.05.043
Acedo-Mendoza A G, Infantes-Molina A, Vargas-Hernandez D, Chavez-Sanchez C A, Rodriguez-Castellon E, Tanori-Cordova J C. Photodegradation of Methylene Blue and Methyl Orange with CuO Supported on ZnO Photocatalysts: The Effect of Copper Loading and Reaction Temperature[J]. Mater. Sci. Semicond. Process., 2020,119105257. doi: 10.1016/j.mssp.2020.105257
Liu Z, Bai H, Xu S, Sun D D. Hierarchical CuO/ZnO "Corn-like" Architecture for Photocatalytic Hydrogen Generation[J]. Int. J. Hydrogen Energy, 2011,36(21):13473-13480. doi: 10.1016/j.ijhydene.2011.07.137
Ding Z, Wang S, Chang X, Wang D H, Zhang T H. Nano-MOF@Defected Film C3N4 Z-Scheme Composite for Visible-Light Photocatalytic Nitrogen Fixation[J]. RSC Adv., 2020,10(44):26246-26255. doi: 10.1039/D0RA03562A
Vaiano V, Matarangolo M, Murcia J J, Rojas H, Navio J A, Hidalgo M C. Enhanced Photocatalytic Removal of Phenol from Aqueous Solutions Using ZnO Modified with Ag[J]. Appl. Catal. B, 2018,225:197-206. doi: 10.1016/j.apcatb.2017.11.075
Kaviyarasu K, Magdalane C M, Kanimozhi K, Kennedy J, Siddhardha B, Reddy E S, Rotte N K, Sharma C S, Thema F T, Letsholathebe D, Mola G T, Maaza M. Elucidation of Photocatalysis, Photoluminescence and Antibacterial Studies of ZnO Thin Films by Spin Coating Method[J]. J. Photochem. Photobiol. B, 2017,173:466-475. doi: 10.1016/j.jphotobiol.2017.06.026
Umar A, Alshahrani A A, Algarni H, Kumar R. CuO Nanosheets as Potential Scaffolds for Gas Sensing Applications[J]. Sens. Actuators B, 2017,250:24-31. doi: 10.1016/j.snb.2017.04.062
Islam M R, Obaid J E, Saiduzzaman M, Nishat S S, Debnath T, Kabir A. Effect of Al Doping on the Structural and Optical Properties of CuO Nanoparticles Prepared by Solution Combustion Method: Experiment and DFT Investigation[J]. J. Phys. Chem. Solids, 2020,147109646. doi: 10.1016/j.jpcs.2020.109646
Li X L, He S S, Liu X S, Jin J S, Meng H. Polymer-Assisted Freeze-Drying Synthesis of Ag-Doped ZnO Nanoparticles with Enhanced Photocatalytic Activity[J]. Ceram. Int., 2019,45(1):494-502. doi: 10.1016/j.ceramint.2018.09.195
Yang L, Zheng H Y, Liu Q W, Zhou S Y, Zhang W. The Doping Site Analysis and Control of Eu3+ in ZnO: Eu Crystal Lattice[J]. J. Lumin., 2018,204:189-194. doi: 10.1016/j.jlumin.2018.08.038
Liu Y F, Yu Z R, Guo S S, Yao L L, Sun R Z, Huang X Y, Zhao W R. Photocatalytic Nitrogen Fixation on Transition Metal Modified TiO2 Nanosheets under Simulated Sunlight[J]. New J. Chem., 2020,44(45):19924-19932. doi: 10.1039/D0NJ04397D
Zhang Y, Huang J W, Ding Y. Porous Co3O4/CuO Hollow Polyhedral Nanocages Derived from Metal-Organic Frameworks with Heterojunctions as Efficient Photocatalytic Water Oxidation Catalysts[J]. Appl. Catal. B, 2016,198:447-456. doi: 10.1016/j.apcatb.2016.05.078
Odoom-Wubah T, Li Q, Wang Q, Usha M Z R, Huang J, Li Q. Template-Free Synthesis of Carbon Self-Doped ZnO Superstructures as Efficient Support for Ultra Fine Pd Nanoparticles and Their Catalytic Activity Towards Benzene Oxidation[J]. Mol. Catal., 2019,469:118-130. doi: 10.1016/j.mcat.2019.03.013
Xiao X C, Han B Q, Chen G, Wang L H, Wang Y D. Preparation and Electrochemical Performances of Carbon Sphere@ZnO Core-Shell Nanocomposites for Supercapacitor Applications[J]. Sci. Rep., 2017,740167. doi: 10.1038/srep40167
Sharma M, Joshi M, Nigam S, Shree S, Avasthi D K, Adelung R, Srivastava S K, Mishra Y K. ZnO Tetrapods and Activated Carbon Based Hybrid Composite: Adsorbents for Enhanced Decontamination of Hexavalent Chromium from Aqueous Solution[J]. Chem. Eng. J., 2019,358:540-551. doi: 10.1016/j.cej.2018.10.031
Qin C, Wang Y, Gong Y X, Zhang Z Y, Cao J L. CuO-ZnO Hetero-Junctions Decorated Graphitic Carbon Nitride Hybrid Nanocomposite: Hydrothermal Synthesis and Ethanol Gas Sensing Application[J]. J. Alloys Compd., 2019,770:972-980. doi: 10.1016/j.jallcom.2018.08.205
Zhao S K, Shen Y B, Hao F L, Kang C K, Cui B Y, Wei D Z, Meng F L. p-n Junctions Based on CuO-Decorated ZnO Nanowires for Ethanol Sensing Application[J]. Appl. Surf. Sci., 2021,538148140. doi: 10.1016/j.apsusc.2020.148140
Duan Y L, Ma J, Dai J N, Qiang L S, Xue J Q. Morphology Engineering of ZnO Nanostructures for Enhanced Photocatalytic Efficiency of In(OH)3/ZnO Nanocomposite[J]. Appl. Surf. Sci., 2021,535147657. doi: 10.1016/j.apsusc.2020.147657
Ahmad I, Akhtar M S, Ahmed E, Ahmad M, Keller V, Khan W Q, Khalid N R. Rare Earth Co-Doped ZnO Photocatalysts: Solution Combustion Synthesis and Environmental Applications[J]. Sep. Purif. Technol., 2020,237116328. doi: 10.1016/j.seppur.2019.116328
Xing P X, Chen P F, Chen Z Q, Hu X, Lin H J, Wu Y, Zhao L H, He Y M. Novel Ternary MoS2/C-ZnO Composite with Efficient Performance in Photocatalytic NH3 Synthesis under Simulated Sunlight[J]. ACS Sustainable Chem. Eng., 2018,6(11):14866-14879. doi: 10.1021/acssuschemeng.8b03388
Lei Y G, Yang C, Hou J H, Wang F, Min S X, Ma X H, Jin Z L, Xu J, Lu G X, Huang K W. Strongly Coupled Cds/Graphene Quantum Dots Nanohybrids for Highly Efficient Photocatalytic Hydrogen Evolution: Unraveling the Essential Roles of Graphene Quantum Dots[J]. Appl. Catal. B, 2017,216:59-69. doi: 10.1016/j.apcatb.2017.05.063
Isari A A, Payan A, Fattahi M, Jorfi S, Kakavandi B. Photocatalytic Degradation of Rhodamine B and Real Textile Wastewater Using Fe-Doped TiO2 Anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): Characterization and Feasibility, Mechanism and Pathway Studies[J]. Appl. Surf. Sci., 2018,462:549-564. doi: 10.1016/j.apsusc.2018.08.133
Zhang F, Shen L, Li J, Zhang Y C, Wang G L, Zhu A P. Room Temperature Photocatalytic Deposition of Au Nanoparticles on SnS2 Nanoplates for Enhanced Photocatalysis[J]. Powder Technol., 2021,383:371-380. doi: 10.1016/j.powtec.2021.01.065
LIU H. Preparation and Photocatalytic Activities for Hydrogen Evolution of Cu Nanoparcitles/Fluorine-Doped Tin Oxide. Guangzhou: South China University of Technology, 2018: 21-30
Zhang L W, Cheng H Y, Zong R L, Zhu Y F. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity[J]. J. Phys. Chem. C, 2009,113(6):2368-2374. doi: 10.1021/jp807778r
Han C, Yang M Q, Weng B, Xu Y J. Improving the Photocatalytic Activity and Anti-Photocorrosion of Semiconductor ZnO by Coupling with Versatile Carbon[J]. Phys. Chem. Chem. Phys., 2014,16(32):16891-16903. doi: 10.1039/C4CP02189D
Taylor C M, Ramirez-Canon A, Wenk J, Mattia D. Enhancing the Photo-Corrosion Resistance of ZnO Nanowire Photocatalysts[J]. J. Hazard. Mater., 2019,378120799. doi: 10.1016/j.jhazmat.2019.120799
Wang L X, Xia Y, Yu J G. Hydrogen-Bond Activation of N2 Molecules and Photocatalytic Nitrogen Fixation[J]. Chem, 2021,7(8):1983-1985. doi: 10.1016/j.chempr.2021.07.009
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zhonghong Yan , Chunxia Li , Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021