Citation: Li-Ping ZHANG, Yong-Gang WAN, Yan-Min WU, Jie WANG, Dong-Bin XU, Jian-Lei XUE, Wen-Bo DUAN, Dao-Sen LIU. One-Pot Aqueous Synthesis and Cell Labeling Application of Glutathione Capped Cu-In-Zn-S Quantum Dots[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 361-367. doi: 10.11862/CJIC.2022.003 shu

One-Pot Aqueous Synthesis and Cell Labeling Application of Glutathione Capped Cu-In-Zn-S Quantum Dots

  • Corresponding author: Li-Ping ZHANG, zhangliping@qmu.edu.cn
  • Received Date: 11 June 2021
    Revised Date: 27 September 2021

Figures(8)

  • We report a one-pot method to directly synthesize highly luminescent Cu-n-Zn-S (CIZS) quantum dots (QDs) in aqueous media by using bio-compatible glutathione (GSH) as capping ligand and stabilizer. The influences of various experimental variables, including reaction time, pH value, and precursor ratio, have been systematically investigated. The optical features and structure of the obtained CIZS QDs have been characterized by UV-Vis and fluorescence spectroscopy, transmission electron microscope, powder X-ray diffraction, and FT-IR. As a result, the stable GSH capped CIZS QDs exhibited excellent photoluminescence emission properties, narrow size distribution and excellent biocompatibility under optimum experimental conditions. In addition, as-prepared CIZS QDs were successfully used for fluorescence imaging of MDA-MB-231 cells and emitted bright red fluorescence.
  • 加载中
    1. [1]

      Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996,271:933-937. doi: 10.1126/science.271.5251.933

    2. [2]

      Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Shape Control of CdSe Nanocrystals[J]. Nature, 2000,404:59-61. doi: 10.1038/35003535

    3. [3]

      Xi L L, Ma H B, Tao G H. Thiourea Functionalized CdSe/CdS Quantum Dots as a Fluorescent Sensor for Mercury Ion Detection[J]. Chin. Chem. Lett., 2016,27(9):1531-1536. doi: 10.1016/j.cclet.2016.03.002

    4. [4]

      Kim D, Kim D H, Lee J H, Grossman J C. Impact of Stoichiometry on the Electronic Structure of PbS Quantum Dots[J]. Phys. Rev. Lett., 2013,110196802. doi: 10.1103/PhysRevLett.110.196802

    5. [5]

      Wang G F, Guan A X, Zhou C Y, Xia S Y, Chen Q, Chen X T, Zhou L Y. Luminescence Properties of CdTe QDs Embedded in Zn5(CO3)2(OH)6 Matrix[J]. Chin. Chem. Lett., 2016,27(12):1788-1792. doi: 10.1016/j.cclet.2016.07.012

    6. [6]

      Derfus A M, Chan W C W, Bhatia S N. Probing the Cytotoxicity of Semiconductor Quantum Dots[J]. Nano Lett., 2004,4(1):11-18. doi: 10.1021/nl0347334

    7. [7]

      Lai L, Jin J C, Xu Z Q, Ge Y S, Jiang F L, Liu Y. Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands[J]. J. Membr. Biol., 2015,248(4):727-740. doi: 10.1007/s00232-015-9785-x

    8. [8]

      Zhang L J, Yu H F, Cao W, Zou C, Dong Y Q, Zhu D M, Huang S M. Enhanced Electrical and Optoelectrical Properties of Cadmium Selenide Nanobelts by Chlorine Doping[J]. Micro Nano Lett., 2014,9(1):55-59. doi: 10.1049/mnl.2013.0611

    9. [9]

      Lan Y W, Yang K, Wang Y L, Li H M. Aqueous Synthesis of Highly Luminescent CdSe Quantum Dots with Narrow Spectra Using Hydrazine Hydrate Reduction Selenium[J]. Micro Nano Lett., 2014,9(3):202-205. doi: 10.1049/mnl.2013.0608

    10. [10]

      Deng D W, Qu L Z, Zhang J, Ma Y X, Gu Y Q. Quaternary Zn-Ag-In-Se Quantum Dots for Biomedical Optical Imaging of RGD-Modified Micelles[J]. ACS Appl. Mater. Interfaces, 2013,5(21):10858-10865. doi: 10.1021/am403050s

    11. [11]

      Kong W G, Zhang B P, Li R F, Wu F F, XuT N, Wu H Z. Plasmon Enhanced Fluorescence from Quaternary Cu-In-Zn-S Quantum Dots[J]. Appl. Surf. Sci., 2015,327(1):394-399.  

    12. [12]

      Wang Y, Hu Y X, Zhang Q, Ge J P, Lu Z D, Hou Y B, Yin Y D. One-Pot Synthesis and Optical Property of Copper Sulfide Nanodisks[J]. Inorg. Chem., 2010,49(14):6601-6608. doi: 10.1021/ic100473e

    13. [13]

      Saldanha P L, Brescia R, Prato M, Li H B, Povia M, Manna L, Lesnyak V. Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles[J]. Chem. Mater., 2014,26(3):1442-1449. doi: 10.1021/cm4035598

    14. [14]

      Torimoto T, Adachi T, Okazaki K I, Sakuraoka M, Shibayama T, Ohtani B, Kudo A, Kuwabata S. Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore[J]. J. Am. Chem. Soc., 2007,129(41):12388-12389. doi: 10.1021/ja0750470

    15. [15]

      Aldakov D, Lefrancois A, Reiss P. Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications[J]. J. Mater. Chem. C, 2013,1(24):3756-3776. doi: 10.1039/c3tc30273c

    16. [16]

      Yarema O, Bozyigit D, Rousseau I, Nowack L, Yarema M, Heiss W, Wood V. Highly Luminescent, Size - and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals[J]. Chem. Mater., 2013,25(18):3753-3757. doi: 10.1021/cm402306q

    17. [17]

      Xiang W D, Ma X, Luo L, Cai W, Xie C P, Liang X J. Facile Synthesis and Characterization of Core/Shell Cu-In-Zn-S/ZnS Nanocrystals with High Luminescence[J]. Mater. Chem. Phys., 2015,149-150:437-444. doi: 10.1016/j.matchemphys.2014.10.042

    18. [18]

      Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo S O Y, Miyazaki M, Maeda H. Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System[J]. Chem. Mater., 2006,18(14):3330-3335. doi: 10.1021/cm0518022

    19. [19]

      Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu P F, Chu H R, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W. Temperature-Dependent Photoluminescence of ZnCuInS/ZnSe/ZnS Quantum Dots[J]. J. Phys. Chem. C, 2013,117(38):19288-19294.

    20. [20]

      Zhang W J, Zhong X H. Facile Synthesis of ZnS-CuInS2-Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst[J]. Inorg. Chem., 2011,50(9):4065-4072. doi: 10.1021/ic102559e

    21. [21]

      Ding L, Zhou P J, Zhan H J, Chen C, Hu W, Zhou T F, Lin C W. Microwave-Assisted Synthesis of L-Glutathione capped ZnSe QDs and Its Interaction with BSA by Spectroscopy[J]. J. Lumin., 2013,142:167-172. doi: 10.1016/j.jlumin.2013.04.008

    22. [22]

      Zheng Y, Gao S, Ying J Y. Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots[J]. Adv. Mater., 2007,19(3):376-380. doi: 10.1002/adma.200600342

    23. [23]

      Leng Z S, Huang L, Shao F, Lv Z C, Li T T, Gu X X, Han H Y. Facile Synthesis of Cu-In-Zn-S Alloyed Nanocrystals with Temperature-Dependent Photoluminescence Spectra[J]. Mater. Lett., 2014,119:100-103. doi: 10.1016/j.matlet.2013.12.109

    24. [24]

      Mao W Y, Guo J, Yang W L, Wang C C, He J, Chen J Y. Synthesis of High-Quality Near-Infrared-Emitting CdTeS Alloyed Quantum Dots via the Hydrothermal Method[J]. Nanotechnology, 2007,18(48)485611. doi: 10.1088/0957-4484/18/48/485611

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    5. [5]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    6. [6]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    7. [7]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    8. [8]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    9. [9]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    10. [10]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    11. [11]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    12. [12]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    13. [13]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    16. [16]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    17. [17]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    18. [18]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    19. [19]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(4)
  • Abstract views(521)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return