Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties
- Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
Citation:
Ya-Xiang SHI, Wen-Da ZHANG, Xin FANG, Xiao-Dong YAN, Zhi-Guo GU. Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(12): 2193-2202.
doi:
10.11862/CJIC.2021.249
Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction[J]. ACS Catal., 2017,8(1):651-655.
Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis[J]. Nano Energy, 2020,70:2211-2855.
Zhao J, Zhang J J, Li Z Y, Bu X H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction[J]. Small, 2020,16(51)e2003916. doi: 10.1002/smll.202003916
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365. doi: 10.1039/C6CS00328A
Oscar D M, Isis L Y, Koper T M, Federico C V. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction[J]. ACS Catal., 2015,5(9):5380-5387. doi: 10.1021/acscatal.5b01638
Wu Z P, Lu X F, Zang S Q, Lou X W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Adv. Funct. Mater., 2020,30(15)1910274. doi: 10.1002/adfm.201910274
Slater A G, Cooper A I. Function-Led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075
Das S, Heasman P, Ben T, Qiu S L. Porous Organic Materials: Strategic Design and Structure-Function Correlation[J]. Chem. Rev., 2017,117(3):1515-1563. doi: 10.1021/acs.chemrev.6b00439
Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem. Rev., 2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689
Li Z E, He T, Gong Y F, Jiang D L. Covalent Organic Frameworks: Pore Design and Interface Engineering[J]. Acc. Chem. Res., 2020,53(8):1672-1685. doi: 10.1021/acs.accounts.0c00386
Xu Y H, Jin S B, Xu H, Atsushi N, Jiang D L. Conjugated Microporous Polymers: Design, Synthesis and Application[J]. Chem. Soc. Rev., 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Metal-Covalent Organic Frameworks (MCOFs): A Bridge between Metal-Organic Frameworks and Covalent Organic Frameworks[J]. Angew. Chem. Int. Ed., 2020,59(33):13722-13733. doi: 10.1002/anie.202004796
Bhat S A, Das C, Maji T K. Metallated Azo-Naphthalene Diimide Based Redox Active Porous Organic Polymer as an Efficient Water Oxidation Electrocatalyst[J]. J.Mater.Chem.A, 2018,6(40):19834-19842. doi: 10.1039/C8TA06588H
Jia H K, Yao Y C, Gao Y Y, Lu D P, Du P W. Pyrolyzed Cobalt Porphyrin-Based Conjugated Mesoporous Polymers as Bifunctional Catalysts for Hydrogen Production and Oxygen Evolution in Water[J]. Chem. Commun., 2016,52(92):13483-13486. doi: 10.1039/C6CC06972J
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F
Dolganov A V, Belov A S, Novikov V V, Vologzhanina A V, Mokhir A, Bubnov Y N, Voloshin Y Z. Iron vs. Cobalt Clathrochelate Electrocatalysts of HER: The First Example on a Cage Iron Complex[J]. Dalton. Trans., 2013,42(13):4373-4376.
Dolganov A V, Tarasova O V, Ivleva A Y, Chernyarva O Y, Grigoryan K A, Ganz V S. Iron(Ⅱ) Clathrochelates as Electrocatalysts of Hydrogen Evolution Reaction at Low pH[J]. Int. J. Hydrog. Energy, 2017,42(44):27084-27093. doi: 10.1016/j.ijhydene.2017.09.080
Cheikh J A, Villagra A, Ranjbari A, Pradon A, Antuch M, Dragoe D, Millet P, Assaud L. Engineering a Cobalt Clathrochelate/Glassy Carbon Interface for the Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,250:292-300. doi: 10.1016/j.apcatb.2019.03.036
Bila J L, Marmier M, Zhurov K O, Scopelliti R, Zivkovic I, Ronnow H M, Shaik N E, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.
Sumit K, Thomas W, Eckhard B, Phalguni C. Deliberate Synthesis for Magnetostructural Study of Linear Tetranuclear Complexes BⅢMnⅡMnⅡBⅢ, MnⅢMnⅡMnⅡMnⅢ, MnⅣMnⅡMnⅡMnⅣ, FeⅢMnⅡMnⅡFeⅢ, and CrⅢMnⅡMnⅡCrⅢ Influence of Terminal Ions on the Exchange Coupling[J]. Inorg. Chem., 2006,45:5911-5923. doi: 10.1021/ic060409a
SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.
(a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, Universität of Göttingen, Göttingen, Germany, 1997.
(b)Sheldrick G M. A Short History of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64(1): 112-122
Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J. Am. Chem. Soc., 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147
Ma Y X, Li Z J, Wei L, Ding Y B, Wang W. A Dynamic Three-Dimensional Covalent Organic Framework[J]. J. Am. Chem. Soc., 2017,139(14):4995-4998. doi: 10.1021/jacs.7b01097
Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement[J]. J. Am. Chem. Soc., 2018,140(3):10016-10024.
Bila, Marmier, Zhurov, Scopelliti, Zickovic, Ronnow, Shalk, Sienkiewicz, Cornel, Severin. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.
Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the Electrochemical H 2 Evolution by Di-iron Sub-site Models[J]. Coord. Chem. Rev., 2005,249(15/16):1664-1676.
Lu H, Wang C, Chen J J, Ge R, Leng W G, Dong B, Huang J, Gao Y N. A Novel 3D Covalent Organic Framework Membrane Grown on a Porous α-Al2O3 Substrate under Solvothermal Conditions[J]. Chem. Commun., 2015,51(85):15562-15565. doi: 10.1039/C5CC06742A
Alameddine B, Shetty S, Baig N, Saleh A M, Fakhreia A S. Synthesis and Characterization of Metalorganic Polymers of Intrinsic Microporosity Based on Iron(Ⅱ) Clathrochelate[J]. Polymer, 2017,122:200-207. doi: 10.1016/j.polymer.2017.06.048
Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2014,53(29):7584-7588. doi: 10.1002/anie.201402822
Babar P T, Pawar B S, Lokhande A C, Gang M G, Jang J S, Suryawanshi M P, Pawar S M, Kim J H. Annealing Temperature Dependent Catalytic Water Oxidation Activity of Iron Oxyhydroxide Thin Films[J]. J. Energy Chem., 2017,26(4):757-761. doi: 10.1016/j.jechem.2017.04.012
Lee J Y, Lee H Y, Lim B K. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013
Yu L, Yang J F, Guan B Y, Lu Y, Lou W D. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(1):172-176. doi: 10.1002/anie.201710877
Gu M L, Wang S C, Chen C, Xiong D K, Yi F Y. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions[J]. Inorg. Chem., 2020,59(9):6078-6086. doi: 10.1021/acs.inorgchem.0c00100
Gan L, Fang J, Wang M R, Hu L T, Zhang K, Lai Y Q, Li J. Preparation of Double-Shell Co9S8/Fe3O4 Embedded in S/N Co-decorated Hollow Carbon nanoellipsoid Derived from Bi-metal Organic Frameworks for Oxygen Evolution Reaction[J]. J. Power Sources, 2018,391:59-66. doi: 10.1016/j.jpowsour.2018.04.082
Dutta S, Indra A, Feng Y, Song T, Paik U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984
Zhang W D, Hu Q T, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B, 2021,286119906. doi: 10.1016/j.apcatb.2021.119906
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
TBPM, blue; H3DFMP, red; Fe, yellow
C: gray; B: dark yellow; O: red; N: blue; Fe: yellow
C: gray; B: dark yellow; O: red; N: blue; Fe: yellow
Inset in (c): corresponding enlarged spectrum of NF