Citation: Ya-Xiang SHI, Wen-Da ZHANG, Xin FANG, Xiao-Dong YAN, Zhi-Guo GU. Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2193-2202. doi: 10.11862/CJIC.2021.249 shu

Binuclear Iron Oxime Boric Acid Based Metal-Containing Porous Organic Polymer: Synthesis, Structure and Electrocatalytic Oxygen Evolution Properties

  • Corresponding author: Zhi-Guo GU, zhiguogu@jiangnan.edu.cn
  • Received Date: 18 June 2021
    Revised Date: 27 September 2021

Figures(8)

  • A three-dimensional metal-containing porous organic polymer (Fe2-POP) was synthesized using ferrous chloride, 2, 6-diformyl-4-methylphenol dioxime (H3DFMP) and tetra(4-(dihydroxy)borylphenyl)methane (TBPM) through one-step coordination and boric acid esterification dehydration polymerization reaction. Binuclear iron as the linear unit was formed by coordination between iron ion and H3DFMP, while TBPM was used as the tetrahedral linking unit, so that the three-dimensional porous organic polymer Fe2-POP with dia topology was produced. X-ray single crystal diffraction analysis of the model compound (MC-1) verified the structural characteristics of the dinuclear ferrous unit. Infrared spectroscopy and solid-state nuclear magnetism characterizations proved the formation of C=N and B-O in Fe2-POP. Fe2-POP had a high specific surface area of 510 m2·g-1 and uniform pore size (0.6-0.8 nm). X-ray photoelectron spectroscopy indicated the presence of divalent iron in Fe2-POP. Scanning electron microscopy and transmission electron microscopy showed that Fe2-POP was composed of 50-100 nm sphere-shaped particles. Electrochemical tests showed that Fe2-POP exhibited excellent electrochemical properties towards oxygen evolution reaction, and it only needed a small overpotential of 258 mV to deliver a current density of 10 mA·cm-2, and the Tafel slope was 71.0 mV·dec-1.
  • 加载中
    1. [1]

      Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 Nanoparticles Embedded in Conductive Microrod Array: An Efficient and Durable Electrocatalyst for Alkaline Oxygen Evolution Reaction[J]. ACS Catal., 2017,8(1):651-655.  

    2. [2]

      Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging Covalent Organic Frameworks Tailored Materials for Electrocatalysis[J]. Nano Energy, 2020,70:2211-2855.  

    3. [3]

      Zhao J, Zhang J J, Li Z Y, Bu X H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction[J]. Small, 2020,16(51)e2003916. doi: 10.1002/smll.202003916

    4. [4]

      Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chem. Soc. Rev., 2017,46(2):337-365. doi: 10.1039/C6CS00328A

    5. [5]

      Oscar D M, Isis L Y, Koper T M, Federico C V. Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction[J]. ACS Catal., 2015,5(9):5380-5387. doi: 10.1021/acscatal.5b01638

    6. [6]

      Wu Z P, Lu X F, Zang S Q, Lou X W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction[J]. Adv. Funct. Mater., 2020,30(15)1910274. doi: 10.1002/adfm.201910274

    7. [7]

      Slater A G, Cooper A I. Function-Led Design of New Porous Materials[J]. Science, 2015,348(6238)aaa8075. doi: 10.1126/science.aaa8075

    8. [8]

      Das S, Heasman P, Ben T, Qiu S L. Porous Organic Materials: Strategic Design and Structure-Function Correlation[J]. Chem. Rev., 2017,117(3):1515-1563. doi: 10.1021/acs.chemrev.6b00439

    9. [9]

      Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem. Rev., 2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689

    10. [10]

      Li Z E, He T, Gong Y F, Jiang D L. Covalent Organic Frameworks: Pore Design and Interface Engineering[J]. Acc. Chem. Res., 2020,53(8):1672-1685. doi: 10.1021/acs.accounts.0c00386

    11. [11]

      Xu Y H, Jin S B, Xu H, Atsushi N, Jiang D L. Conjugated Microporous Polymers: Design, Synthesis and Application[J]. Chem. Soc. Rev., 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a

    12. [12]

      Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Metal-Covalent Organic Frameworks (MCOFs): A Bridge between Metal-Organic Frameworks and Covalent Organic Frameworks[J]. Angew. Chem. Int. Ed., 2020,59(33):13722-13733. doi: 10.1002/anie.202004796

    13. [13]

      Bhat S A, Das C, Maji T K. Metallated Azo-Naphthalene Diimide Based Redox Active Porous Organic Polymer as an Efficient Water Oxidation Electrocatalyst[J]. J.Mater.Chem.A, 2018,6(40):19834-19842. doi: 10.1039/C8TA06588H

    14. [14]

      Jia H K, Yao Y C, Gao Y Y, Lu D P, Du P W. Pyrolyzed Cobalt Porphyrin-Based Conjugated Mesoporous Polymers as Bifunctional Catalysts for Hydrogen Production and Oxygen Evolution in Water[J]. Chem. Commun., 2016,52(92):13483-13486. doi: 10.1039/C6CC06972J

    15. [15]

      Guan X Y, Chen F Q, Fang Q R, Qiu S L. Design and Applications of Three Dimensional Covalent Organic Frameworks[J]. Chem. Soc. Rev., 2020,49(5):1357-1384. doi: 10.1039/C9CS00911F

    16. [16]

      Dolganov A V, Belov A S, Novikov V V, Vologzhanina A V, Mokhir A, Bubnov Y N, Voloshin Y Z. Iron vs. Cobalt Clathrochelate Electrocatalysts of HER: The First Example on a Cage Iron Complex[J]. Dalton. Trans., 2013,42(13):4373-4376.  

    17. [17]

      Dolganov A V, Tarasova O V, Ivleva A Y, Chernyarva O Y, Grigoryan K A, Ganz V S. Iron(Ⅱ) Clathrochelates as Electrocatalysts of Hydrogen Evolution Reaction at Low pH[J]. Int. J. Hydrog. Energy, 2017,42(44):27084-27093. doi: 10.1016/j.ijhydene.2017.09.080

    18. [18]

      Cheikh J A, Villagra A, Ranjbari A, Pradon A, Antuch M, Dragoe D, Millet P, Assaud L. Engineering a Cobalt Clathrochelate/Glassy Carbon Interface for the Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2019,250:292-300. doi: 10.1016/j.apcatb.2019.03.036

    19. [19]

      Bila J L, Marmier M, Zhurov K O, Scopelliti R, Zivkovic I, Ronnow H M, Shaik N E, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    20. [20]

      Sumit K, Thomas W, Eckhard B, Phalguni C. Deliberate Synthesis for Magnetostructural Study of Linear Tetranuclear Complexes BMnMnB, MnMnMnMn, MnMnMnMn, FeMnMnFe, and CrMnMnCr Influence of Terminal Ions on the Exchange Coupling[J]. Inorg. Chem., 2006,45:5911-5923. doi: 10.1021/ic060409a

    21. [21]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    22. [22]

      Sheldrick G M. Bruker Analytical X-ray Systems, Madison, WI, 1996.

    23. [23]

      (a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, Universität of Göttingen, Göttingen, Germany, 1997.
      (b)Sheldrick G M. A Short History of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64(1): 112-122

    24. [24]

      Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. J. Am. Chem. Soc., 2015,137(26):8352-8355. doi: 10.1021/jacs.5b04147

    25. [25]

      Ma Y X, Li Z J, Wei L, Ding Y B, Wang W. A Dynamic Three-Dimensional Covalent Organic Framework[J]. J. Am. Chem. Soc., 2017,139(14):4995-4998. doi: 10.1021/jacs.7b01097

    26. [26]

      Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement[J]. J. Am. Chem. Soc., 2018,140(3):10016-10024.  

    27. [27]

      Bila, Marmier, Zhurov, Scopelliti, Zickovic, Ronnow, Shalk, Sienkiewicz, Cornel, Severin. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery[J]. Eur. J. Inorg. Chem., 2018,26:3118-3125.  

    28. [28]

      Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the Electrochemical H 2 Evolution by Di-iron Sub-site Models[J]. Coord. Chem. Rev., 2005,249(15/16):1664-1676.  

    29. [29]

      Lu H, Wang C, Chen J J, Ge R, Leng W G, Dong B, Huang J, Gao Y N. A Novel 3D Covalent Organic Framework Membrane Grown on a Porous α-Al2O3 Substrate under Solvothermal Conditions[J]. Chem. Commun., 2015,51(85):15562-15565. doi: 10.1039/C5CC06742A

    30. [30]

      Alameddine B, Shetty S, Baig N, Saleh A M, Fakhreia A S. Synthesis and Characterization of Metalorganic Polymers of Intrinsic Microporosity Based on Iron(Ⅱ) Clathrochelate[J]. Polymer, 2017,122:200-207. doi: 10.1016/j.polymer.2017.06.048

    31. [31]

      Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2014,53(29):7584-7588. doi: 10.1002/anie.201402822

    32. [32]

      Babar P T, Pawar B S, Lokhande A C, Gang M G, Jang J S, Suryawanshi M P, Pawar S M, Kim J H. Annealing Temperature Dependent Catalytic Water Oxidation Activity of Iron Oxyhydroxide Thin Films[J]. J. Energy Chem., 2017,26(4):757-761. doi: 10.1016/j.jechem.2017.04.012

    33. [33]

      Lee J Y, Lee H Y, Lim B K. Chemical Transformation of Iron Alkoxide Nanosheets to FeOOH Nanoparticles for Highly Active and Stable Oxygen Evolution Electrocatalysts[J]. J. Ind. Eng. Chem., 2018,58:100-104. doi: 10.1016/j.jiec.2017.09.013

    34. [34]

      Yu L, Yang J F, Guan B Y, Lu Y, Lou W D. Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution[J]. Angew. Chem. Int. Ed., 2018,57(1):172-176. doi: 10.1002/anie.201710877

    35. [35]

      Gu M L, Wang S C, Chen C, Xiong D K, Yi F Y. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions[J]. Inorg. Chem., 2020,59(9):6078-6086. doi: 10.1021/acs.inorgchem.0c00100

    36. [36]

      Gan L, Fang J, Wang M R, Hu L T, Zhang K, Lai Y Q, Li J. Preparation of Double-Shell Co9S8/Fe3O4 Embedded in S/N Co-decorated Hollow Carbon nanoellipsoid Derived from Bi-metal Organic Frameworks for Oxygen Evolution Reaction[J]. J. Power Sources, 2018,391:59-66. doi: 10.1016/j.jpowsour.2018.04.082

    37. [37]

      Dutta S, Indra A, Feng Y, Song T, Paik U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33766-33774. doi: 10.1021/acsami.7b07984

    38. [38]

      Zhang W D, Hu Q T, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B, 2021,286119906. doi: 10.1016/j.apcatb.2021.119906

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    9. [9]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(8)
  • Abstract views(2013)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return