Citation: Shu-Tong PANG, Hui ZHAO. Synthesis and Electrochemical Properties of La2-xBixCuO4 Cathode Material[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2185-2192. doi: 10.11862/CJIC.2021.246 shu

Synthesis and Electrochemical Properties of La2-xBixCuO4 Cathode Material

  • Corresponding author: Hui ZHAO, zhaohui98@hlju.edu.cn
  • Received Date: 15 June 2021
    Revised Date: 5 October 2021

Figures(6)

  • The cathode material La2-xBixCuO4 (x=0, 0.05, 0.10) for solid oxide fuel cell was synthesized by glycinenitrate method. The phase of the material was analyzed by X-ray diffraction (XRD) method. The results show that the material crystallizes in peroskite-type single phase oxide. Due to the increase doping amount of bismuth, the space group of the material changes from Fmmm to I4/mmm. The unit cell volume increases with the doping amount of bismuth. La2-xBixCuO4 cathode materials were found to show no chemical reaction with the electrolyte Sm0.2Ce0.8O1.9 (SDC) at 950℃ for 24 h, indicating the good chemical compatibility of La2-xBixCuO4 with SDC material. The bismuth doping significantly increased the electrical conductivity of the material. The highest conductivity reached 90.3 S·cm-1 at 350℃ for La1.9Bi0.1CuO4. The temperature programmed desorption (TPD) measurement proves that bismuth doping promotes the surface oxygen absorption ability of La2-xBixCuO4 material, and La1.9Bi0.1CuO4 shows the largest amount of oxygen vacancies among the Bi-doped materials. The electrochemical properties of La2-xBixCuO4 cathode materials were further studied by AC impedance spectroscopy under different oxygen partial pressures. The polarization resistance of La1.9Bi0.1CuO4 was 0.26 Ω·cm2 at 700℃ in air. The peak power density (PPD) at 700℃ was 308 mW·cm-2 for the SDC electrolyte supported single cell NiO-SDC/SDC/La1.90Bi0.10CuO4. The reaction rate limiting step is identified to be a mixed step involving the gas oxygen diffusion through the porous cathode and the surface adsorption process.
  • 加载中
    1. [1]

      CHEN S S. The Development Status and Prospects of the Solid Oxide Fuel Cell Industry[J]. Journal of Ceramics, 2020,41:627-632.  

    2. [2]

      Li Q, Fan Y, Zhao H, Huo L H. Preparation and Electrochemical Properties of a Sm2-xSrxNiO4 Cathode for an IT-SOFC[J]. J. Power Sources, 2007,167(1):64-68. doi: 10.1016/j.jpowsour.2007.02.018

    3. [3]

      Gao L, Li Q, Sun L P, Zhang X F, Huo L H, Zhao H, Grenier J. A Novel Family of Nb-Doped Bi0.5Sr0.5FeO3-δ Perovskite as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells[J]. J. Power Sources, 2017,371:86-95. doi: 10.1016/j.jpowsour.2017.10.036

    4. [4]

      Sharma R K, Djurado E. An Efficient Hierarchical Nanostructured Pr6O11 Electrode for Solid Oxide Fuel Cells[J]. J. Mater. Chem. A, 2018,6(23):10787-101802. doi: 10.1039/C8TA00190A

    5. [5]

      Li S L, Xia T, Li Q, Sun L P, Huo L H, Zhao H. A-Site Ba-Deficiency Layered Perovskite EuBa1-xCo2O6-δ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Electrochemical Properties and Oxygen Reduction Reaction Kinetics[J]. Int. J. Hydrogen Energy, 2017,42:33413-24425.  

    6. [6]

      Aguadero A, Alonso J A, Martnez L. In Situ High Temperature Neutron Powder Diffraction Study of Oxygen-Rich La2NiO4+δ in Air: Correlation with the Electrical Behavior[J]. J. Mater. Chem., 2006,33:3402-3408.  

    7. [7]

      Lee D, Lee H N. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides[J]. Materials, 2017,10368. doi: 10.3390/ma10040368

    8. [8]

      Zhang L K, Li S L, Xia T, Sun L P, Huo L H, Zhao H. Co-Deficient PrBaCo2-xO6-δ Perovskites as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells: Enhanced Electrochemical Performance and Oxygen Reduction Kinetics[J]. Int. J. Hydrogen Energy, 2018,43:3761-3375. doi: 10.1016/j.ijhydene.2018.01.018

    9. [9]

      Zhao F, Wang X, Wang Z. K2NiF4 type La2-xSrxCo0.8Ni0.2O4+δ as the Cathodes for Solid Oxide Fuel Cells[J]. Solid State Ionics, 2008,27:1450-1453.  

    10. [10]

      Kharton V V, Tsipis E V, Yaremcheno A A. Surface-Limitied Oxygen Transport and Electrode Properties of La2Ni0.8Cu0.2O4+δ[J]. Solid State Ionics, 2004,3:327-337.  

    11. [11]

      Jin C, Liu J, Zhang Y. Characterization and Electrochemical Performances of Ba2-xSrFeO4+δ as a Novel Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Power Sources, 2008,2:482-488.  

    12. [12]

      Aguadero A, Alonso J A, Escudero M J. Evaluation of the La2Ni1-xCuxO4+δ System as SOFC Cathode Material with YSZ and LSGM as Electrolytes[J]. Solid State Ionics, 2008,11:393-400.  

    13. [13]

      Ding X F, Li M N, Zhao X Y, Ding L M, Yan Y F, Wang L X, Wang Z H. A Highly Active and Stable Cathode for Oxygen Reduction in Intermediate Temperature Solid Oxide Fuel Cells[J]. Sustainable Energy Fuels, 2020,4:1168-1179. doi: 10.1039/C9SE01096C

    14. [14]

      Gu X K, Nikolla E. Design of Ruddlesden-Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution[J]. ACS Catal., 2017,7:5912-5920. doi: 10.1021/acscatal.7b01483

    15. [15]

      Laguna-Bercero M A, Monzon H, Larrea A, Orera V M. Improved Stability of Reversible Solid Oxide Cells with a Nickelate-Based Oxygen Electrode[J]. J. Mater. Chem. A, 2016,4:1446-1453. doi: 10.1039/C5TA08531D

    16. [16]

      Lee Y L, Lee D, Wang X R, Lee H N, Morgan D, Shao-Horn Y. Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors[J]. J. Phys. Chem. Lett., 2016,7:244-249. doi: 10.1021/acs.jpclett.5b02423

    17. [17]

      Guan B, Li W, Zhang H, Liu X. Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+δ Ruddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells[J]. J. Electrochem. Soc., 2015,162:F707-F712. doi: 10.1149/2.0541507jes

    18. [18]

      Shen L, Salvador P, Mason T O, Fueki K. High Temperature Electrical Properties and Defect Chemistry of La2-xCaxCuO4-y Superconductors-Ⅱ. Defect Structure Modeling[J]. J. Phys. Chem. Solids, 1996,57:1977-1987. doi: 10.1016/S0022-3697(95)00324-X

    19. [19]

      Mazo G N, Savvin S N. The Molecular Dynamics Study of Oxygen Mobility in La2-xSrxCuO4-δ[J]. Solid State Ionics, 2004,175:371-374. doi: 10.1016/j.ssi.2003.12.028

    20. [20]

      Ferkhi M, Ahmed Yahia H. Electrochemical and Morphological Characterizations of La2-xNiOδ (x=0.01, 0.02, 0.03 and 0.05) as New Cathodes Materials for IT-SOFC[J]. Mater. Res. Bull., 2016,83:268-274. doi: 10.1016/j.materresbull.2016.06.009

    21. [21]

      Adnene M, Mohamed H I, Nassira C B, Ahmed H. From n=1 to n=2 of the Ruddlesden-Popper Phases via Ca-Doping and Induced Effects on Electrical and Optical Properties of La2-xCaxCuO4-δ[J]. J. Phys. Chem., 2017,110:76-86.  

    22. [22]

      Hu X Y, Li M, Xie Y, Yang Y, Wu X J, Xia C R. Oxygen Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells[J]. ACS Appl. Mater. Interfaces, 2019,11:21953-21602.  

    23. [23]

      Simer S P, Bonnett J F, Canfield N L, Meinhardt K D, Shelton J P, Sprenkle V L, Stevenson J W. Development of Lanthanum Ferrite SOFC Cathodes[J]. J. Power Sources, 2003,113:1-10. doi: 10.1016/S0378-7753(02)00455-X

    24. [24]

      Wedig A, Merkle R, Maier J. Oxygen Exchange Kinetics of (Bi, Sr) (Co, Fe)O3-δ Thin-Film Microelectrodes[J]. J. Electrochem. Soc., 2014,161:F23-F32. doi: 10.1149/2.017401jes

    25. [25]

      Zhu Z S, Li M, Xia C R, Bouwmeester H J M. Bismuth-Doped La1.75Sr0.25NiO4+δ as a Novel Cathode Material for Solid Oxide Fuel Cells[J]. J. Mater. Chem. A, 2017,514012. doi: 10.1039/C7TA03381H

    26. [26]

      Yao C, Meng J, Liu X, Zhang X, Meng F. Effects of Bi Doping on the Micro-Structure, Electrical and Electrochemical Properties of La2-xBixCu0.5Mn1.5O6(x=0, 0.1 and 0.2) Perovskites as Novel Cathodes for Solid Oxide Fuel Cells[J]. Electrochim. Acta, 2017,229:429-437. doi: 10.1016/j.electacta.2017.01.153

    27. [27]

      Santos-Gomez L D, Porras-Vazquez J M, Hurtado J, Losilla E R, Marrero-Lopez D. Stability and Electrochemical Performance of Nanostructured La2CuO4+δ Cathodes[J]. J. Alloys Compd., 2019,788:565-572. doi: 10.1016/j.jallcom.2019.02.237

    28. [28]

      Qian J, Tao Z, Xiao J, Jiang J S, Liu W. Performance Improvement of Ceria-Based Solid Oxide Fuel Cells with Yttria-Stabilized Zirconia as an Electronic Blocking Layer by Pulsed Laser Deposition[J]. Int. J. Hydrogen Energy, 2013,38:2407-2412. doi: 10.1016/j.ijhydene.2012.11.112

    29. [29]

      Wang S R, Takehisa K, Masayuki D, Takuya H. Electrical and Ionic Conductivity of Gd-Doped Ceria[J]. J. Electrochem Soc., 2000,147:3606-3609. doi: 10.1149/1.1393946

    30. [30]

      Zheng K, Grozkowska-Sobaś A, Swierczek K. Evaluation of Ln2CuO4(Ln: La, Pr, Nd) Oxides as Cathode Materials for IT-SOFCs[J]. Mater. Res. Bull., 2012,47:4089-4095. doi: 10.1016/j.materresbull.2012.08.072

  • 加载中
    1. [1]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    4. [4]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    14. [14]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(1)
  • Abstract views(1504)
  • HTML views(264)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return