Mie Scattering Theory Deduction and Experimental Verification of Correlation Between Length of One-Dimensional Nanomaterials Cs0.2WO3 and W18O49 and Infrared Absorption
- Corresponding author: Rui-Xing LI, rli@buaa.edu.cn
Citation:
Yuan-Peng XIONG, Fan-Dong KONG, Rui-Xing LI. Mie Scattering Theory Deduction and Experimental Verification of Correlation Between Length of One-Dimensional Nanomaterials Cs0.2WO3 and W18O49 and Infrared Absorption[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(10): 1764-1772.
doi:
10.11862/CJIC.2021.200
Hou Y N. J. Lumin., 2019, 208: 279-283
doi: 10.1016/j.jlumin.2018.12.062
Yu J, Zhang J X, Zhang L D, Jia J H, Xu W, Wang J F, Fei G T. Appl. Optics, 2016, 55(18): 4871-4876
doi: 10.1364/AO.55.004871
Juve V, Cardinal M F, Lombardi A, Crut A, Maioli P, Preze-Juste J, Liz-Marzan L M, Del Fatti N, Vallee F. Nano Lett., 2013, 13: 2234-2240
doi: 10.1021/nl400777y
Ungureanu C, Rayavarapu R G, Manohar S, Van Leeuwen T G. J. Appl. Phys., 2009, 105(10): 102032
doi: 10.1063/1.3116139
Elnogy R M, Mourad M H, Elnaby S L H, Abou Kana M T H. Opt. Laser Technol., 2018, 101: 208-215
doi: 10.1016/j.optlastec.2017.11.019
Takeda H, Adachi K. J. Am. Ceram. Soc., 2007, 90(12): 4059-4061
Guo C S, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T. Inorg. Chem., 2012, 43(28): 4763-4771
Guo C S, Yin S, Zhang P L, Yan M, Adachi K, Chonan T, Sato T. J. Mater. Chem., 2011, 21(13): 5099-5105
doi: 10.1039/c0jm04379f
Mattox T M, Bergerud A, Agrawal A, Milliron D J. Chem. Mater., 2014, 26(5): 1779-1784
doi: 10.1021/cm4030638
Kim J, Agrawal A, Krieg F, Bergerud A, Milliron D J. Nano Lett., 2016, 16(6): 3879-3884
doi: 10.1021/acs.nanolett.6b01390
Wang J, Sun X Y, Han Y D, Cheng Z Z, Liu T G. Opt. Commun., 2021, 483: 126663
doi: 10.1016/j.optcom.2020.126663
Ahmed A M, Mehanery A, Shaban M, Aly A H. Mater. Res. Express, 2019, 6(8): 085073
doi: 10.1088/2053-1591/ab2145
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983.
Miller M M, Lazarides A A. J. Phys. Chem. B, 2005, 109(46): 21556-21565
doi: 10.1021/jp054227y
Noguez C. J. Phys. Chem. C, 2007, 111(10): 3806-3819
doi: 10.1021/jp066539m
Machida K, Adachi K. J. Phys. Chem. C, 2016, 120(30): 16919-16930
doi: 10.1021/acs.jpcc.6b02936
Bohren C F, Huffman D R. Appl. Optics, 1981, 20(6): 959-962
doi: 10.1364/AO.20.000959
Hussain A, Gruehn R, Ruscher C H. J. Alloys Compd., 1997, 246: 51-61
doi: 10.1016/S0925-8388(96)02470-X
Sato Y, Terauchi M, Adachi K. J. Appl. Phys., 2012, 112(7): 074308
doi: 10.1063/1.4752867
Salje E, GÜTTLER B. Philos. Mag. B, 1984, 50(5): 607-620
doi: 10.1080/13642818408238882
Molenda J, Kubik A. Phys. Status Solidi B, 2010, 191(2): 471-478
Manthiram K, Alivisatos A P. J. Am. Chem. Soc., 2012, 134(9): 3995-3998
doi: 10.1021/ja211363w
Guo C S, Yin S, Dong Q, Sato T. Nanoscale, 2012, 4(11): 3394-3398
doi: 10.1039/c2nr30612c
Jinhui Jiang , Jiaqi Sun , Yongyi Chen , Lei Zhang , Pengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Tong WANG , Xuefang ZHU , Qi GAO , Hongbo ZHANG , Chao REN , Lixia GE . Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137
Hao Ren , Wen Zhao , Fangna Dai , Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Wenjun Zhu , Chenbin Ai , Kaiqiang Xu , Yatai Zhou , Xidong Zhang , Yong Zhang . WO3@TP inorganic@organic S-scheme photocatalyst for boosting H2O2 production. Acta Physico-Chimica Sinica, 2026, 42(3): 100184-0. doi: 10.1016/j.actphy.2025.100184
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Dawei Zhang , Lei Zhang , Yibo Zhou , Yajie Li , YuPeng Guo . Developing a “One Core, Three Dimensions, Five Integrations” Chemistry Curriculum System for Non-Chemistry Majors at Jilin University. University Chemistry, 2025, 40(12): 147-156. doi: 10.12461/PKU.DXHX202510089
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
Xiaxi Yao , Xiuli Hu , Fangcheng Huang , Xuhong Wang , Xuekun Hong , Dawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192
cHCl=(a) 8 mol·L-1, (b) 12 mol·L-1; Hydrothermal reaction temper-ature: 220 ℃; Hydrothermal reaction time: 30 h
cHCl=(a) 8 mol·L-1, (b) 12 mol·L-1; Hydrothermal reaction temperature: 220 ℃; Hydrothermal reaction time: 30 h
cHCl=(a, c) 8 mol·L-1, (b, d) 12 mol·L-1; Hydrothermal reaction temperature: 220 ℃; Hydrothermal reaction time: 30 h
cHCl=(a) 8 mol·L-1, (b) 12 mol·L-1; Hydrothermal reaction tempera-ture: 220 ℃; Hydrothermal reaction time: 30 h
cHCl=(a) 8 mol·L-1, (b) 12 mol·L-1; Hydrothermal reaction temper-ature: 220 ℃; Hydrothermal reaction time: 30 h
cHCl=(a) 8 mol·L-1, (b) 12 mol·L-1; Hydrothermal reaction temper-ature: 220 ℃; Hydrothermal reaction time: 30 h; Irradiation condi-tion: 50 W halogen lamp, 10 s, 15 times; Inset: pictures of Cs0.2WO3 powder
(a)cWCl6=8 mmol·L-1 in n-propanol, (b) cWCl6=10 mmol·L-1 in ethanol; Hydrothermal reaction temperature: 200 ℃; Hydrothermal reaction time: 20 h
(a, c) cWCl6=8 mmol·L-1 in n-propanol, (b, d) cWCl6=10 mmol·L-1 in ethanol; Hydrothermal reaction temperature: 200 ℃; Hydrothermal reaction time: 20 h
(a) cWCl6=8 mmol·L-1 in n-propanol, (b) cWCl6=10 mmol·L-1 in ethanol; Hydrothermal reaction temperature: 200 ℃; Hydrothermal reaction time: 20 h
(a) cWCl6=8 mmol·L-1 in n-propanol, (b) cWCl6=10 mmol·L-1 in ethanol; Hydrothermal reaction temperature: 200 ℃; Hydrothermal reaction time: 20 h; Irradiation condition: 50 W halogen lamp, 10 s, 15 times; Inset: picture of W18O49 powder