KIT-6 Supported CeO2 for Catalytic Synthesis of Dimethyl Carbonate from CO2 and Methanol
- Corresponding author: Guo-Qiang ZHANG, zgq198615@163.com Zhong LI, lizhong@tyut.edu.cn
Citation:
Ya-Bo SHI, Guo-Qiang ZHANG, Yu-Chen SUN, Hua-Yan ZHENG, Zhong LI, Ju SHANGGUAN, Jie MI, Shou-Jun LIU, Peng-Zheng SHI. KIT-6 Supported CeO2 for Catalytic Synthesis of Dimethyl Carbonate from CO2 and Methanol[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(6): 1004-1016.
doi:
10.11862/CJIC.2021.129
SUN Y C, ZHANG G Q, LIU B, LI Z, SHANGGUAN J, LIU S J, SHI P Z. Chem. Ind. Eng. Prog., 2019, 38(11): 5127-5135
Zhong J W, Yang X F, Wu Z L, Liang B L, Huang Y Q, Zhang T. Chem. Soc. Rev., 2020, 49(5): 1385-1413
doi: 10.1039/C9CS00614A
Ronda-Lloret M, Rothenberg G, Shiju N. R. ChemSusChem, 2019, 12(17): 3896-3914
doi: 10.1002/cssc.201900915
Zhou W, Cheng K, Kang J C, Zhou C, Subramanian V, Zhang Q H, Wang Y. Chem. Soc. Rev., 2019, 48(12): 3193-3228
doi: 10.1039/C8CS00502H
Liu M S, Wang X, Jiang Y C, Sun J M, Arai M. Catal. Rev., 2018, 61(2): 214-269
Kumar P, Srivastava V C, Štangar U L, Mušič B, Mishra I M, Meng Y Z. Catal. Rev.-Sci. Eng., 2019, DOI:10.1080/01614940.2019.1696609
doi: 10.1080/01614940.2019.1696609
Huang S Y, Yan B, Wang S P, Ma X B. Chem. Soc. Rev., 2015, 44(10): 3079-3116
doi: 10.1039/C4CS00374H
Jung K T, Bell A T. J. Catal., 2001, 204(2): 339-347
doi: 10.1006/jcat.2001.3411
Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S. C, Li Z. ACS Catal., 2018, 8(11): 10446-10456
doi: 10.1021/acscatal.8b00415
Wang S P, Zhao L F, Wang W, Zhao Y J, Zhang G L, Ma X B, Gong J L. Nanoscale, 2013, 5(12): 5582-5588
doi: 10.1039/c3nr00831b
Marciniak A A, Alves O C, Appel L G, Mota C J. A. J. Catal., 2019, 371: 88-95
doi: 10.1016/j.jcat.2019.01.035
Liu B, Li C M, Zhang G Q, Yan L F, Li Z. New J. Chem., 2017, 41(20): 12231-12240
doi: 10.1039/C7NJ02606D
ZHANG G Q, SUN Y C, SHI Y B, ZHENG H Y, LI Z, SHANGGUAN J, LIU S J, SHI P Z. Chem. J. Chinese Universities, 2020, 9(41): 2061-2069
Liu H, Zou W J, Xu X L, Zhang X L, Yang Y Q, Yue H J, Yu Y, Tian G, Feng S H. J. CO2 Util., 2017, 17: 43-49
doi: 10.1016/j.jcou.2016.11.006
Fu Z W, Zhong Y Y, Yu Y H, Long L Z, Xiao M, Han D M, Wang S J, Meng Y Z. ACS Omega, 2018, 3(1): 198-207
doi: 10.1021/acsomega.7b01475
Soni K, Rana B S, Sinha A K, Bhaumik A, Nandi M, Kumar M, Dhar G. M. Appl. Catal. B, 2009, 90(1/2): 55-63
Cao H X, Zhang J, Guo C L, Chen J G, Ren X K. Chin. J. Catal., 2017, 38(7): 1127-1137
doi: 10.1016/S1872-2067(17)62862-6
Subhan F, Aslam S, Yan Z F, Ikram M, Rehman S. Microporous Mesoporous Mater., 2014, 199: 108-116
doi: 10.1016/j.micromeso.2014.08.018
Cao H X, Wang W Y, Cui T L, Wang H Y, Zhu G, Ren X K. Energies, 2020, 13(9): 2235
doi: 10.3390/en13092235
Zhou X F, Wan J W, Liu Y F, Liu D, Wang H, Lai X Y, Zou Y Z, Lin G, Chen J. Nano, 2017, 12(9): 1750104
doi: 10.1142/S1793292017501041
Taghizadeh M, Akhoundzadeh H, Rezayan A, Sadeghian M. Int. J. Hydrogen Energy, 2018, 43(24): 10926-10937
doi: 10.1016/j.ijhydene.2018.05.034
Bai B Y, Qiao Q, Li Y P, Peng Y, Li J H. Chin. J. Catal., 2018, 39(4): 630-638
doi: 10.1016/S1872-2067(18)63036-0
Kleitz F, Choi S, Ryoo R. Chem. Commun., 2003, 9: 2136-2137
Harun T S, Christian W. L, Hans B, Bernd T, Roland S, Ferdi S. J. Am. Chem. Soc., 2008, 130(34): 11510-11517
doi: 10.1021/ja803362s
Hu B, Liu H, Tao K, Xiong C R, Zhou S H. J. Phys. Chem. C, 2013, 117(49): 26385-26395
doi: 10.1021/jp4098028
Shao Y F, Wang L Z, Zhang J L, Anpo M. J. Phys. Chem. B, 2005, 109: 20835-20841
doi: 10.1021/jp054024+
Zhang J Y, Zhao S Y, Zhao Y J, Ma X B, Wang S P. Asia-Pac. J. Chem. Eng., 2021, 16(1): e2517
Chen Y D, Tang Q, Ye Z B, Li Y, Yang Y, Pu H Y, Li G. New J. Chem., 2020, 44(29): 12522-12530
doi: 10.1039/D0NJ02650F
CHU S L, LI X, Robertson A W, SUN Z Y. Acta Phys.-Chim. Sin., 2021, 37(5): 2009023
Chu S L, Yan X P, Choi C H, Hong S, Robertson A W, Masa J, Han B X, Jung Y S, Sun Z Y. Green Chem., 2020, 22(19): 6540-6546
doi: 10.1039/D0GC02279A
Kumar P, Srivastava V C, Gläser R, With P, Mishra I M. Powder Technol., 2017, 309: 13-21
doi: 10.1016/j.powtec.2016.12.016
Zhao S Y, Wang S P, Zhao Y J, Ma X B. Chin. Chem. Lett., 2017, 28(1): 65-69
doi: 10.1016/j.cclet.2016.06.003
Hu W K, He F, Chen X, Liu S T. J. Nanopart. Res., 2018, 21(1): 6
Kumar P, With P, Srivastava V C, Shukla K, Gläser R, Mishra I M. RSC Adv., 2016, 6(111): 110235-110246
doi: 10.1039/C6RA22643D
Zhang M, Xiao M, Wang S J, Han D M, Lu Y X, Meng Y Z. J. Cleaner Prod., 2015, 103: 847-853
doi: 10.1016/j.jclepro.2014.09.024
Li A X, Pu Y F, Li F, Luo J, Zhao N, Xiao F K. J. CO2 Util., 2017, 19: 33-39
doi: 10.1016/j.jcou.2017.02.016
Zhang R, Guo L, Chen C, Chen J Z, Chen A J, Zhao X G, Liu X R, Xiu Y H, Hou Z S. Catal. Sci. Technol., 2015, 5(5): 2959-2972
doi: 10.1039/C5CY00166H
Chen S C, Wang H, Kang Z X, Jin S, Zhang X D, Zheng X S, Qi Z M, Zhu J F, Pan B C, Xie Y. Nat. Commun., 2019, 10(1): 788
doi: 10.1038/s41467-019-08697-x
Fu Y, Zhu H, Shen J. Thermochim. Acta, 2005, 434(1/2): 88-92
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Reaction condition: 0.2 g catalyst, 35 mL methanol, initial pressure: 3 MPa, reaction pressure: 6.8 MPa, reaction temperature: 140 ℃
Reaction conditions: (a) 0.2 g catalyst, 35 mL methanol, initial pressure: 3 MPa, reaction pressure: 6.8 MPa; (b) 0.2 g catalyst, 35 mL methanol, reaction temperature: 140 ℃