Syntheses and Crystal Structures of Two Copper Complexes Based on Thienyl and Pyridyl Substituted Triaryltriazoles

Gang LI Zhe FENG Rong-Rong NIE Dun-Ru ZHU

Citation:  Gang LI, Zhe FENG, Rong-Rong NIE, Dun-Ru ZHU. Syntheses and Crystal Structures of Two Copper Complexes Based on Thienyl and Pyridyl Substituted Triaryltriazoles[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 561-568. doi: 10.11862/CJIC.2021.054 shu

噻吩和吡啶取代三芳基三唑的两个铜配合物的合成与晶体结构

    通讯作者: 朱敦如, zhudr@njtech.edu.cn
  • 基金项目:

    江苏省自然科学基金 BK20181374

摘要: 分别以3-(2-吡啶基)-4-苯基-5-(2-噻吩基)-1,2,4-三氮唑(L1)和3-(2-吡啶基)-4-(4-氯苯基)-5-(2-噻吩基)-1,2,4-三氮唑(L2)作为配体,合成了2个新的单核铜配合物:trans-[Cu(L12(MeOH)2](ClO421)和trans-[Cu(L22(ClO42]·2MeCN(2),并对其进行了红外、元素分析、单晶结构和粉末X射线衍射表征。2个配合物都属于单斜晶系,P21/c空间群。单晶结构分析表明,配合物12中的铜离子均处于一个扭曲的八面体配位环境[CuN4O2],其中1的轴向由2个甲醇分子配位,而2的轴向由2个高氯酸根配位。处于赤道面的配体的吡啶N原子和三氮唑的一个N原子采用螯合双齿模式参与配位,而噻吩不配位。配合物2含2个乙腈客体分子,乙腈与三氮唑环之间存在ππ堆积作用。配合物12中存在O-H…O、C-H…O、C-H…N氢键和C-H…π相互作用,从而连接单核配合物形成三维网络。

English

  • Over the past few decades, 3, 4, 5-triarylsubstituted 1, 2, 4-triazoles have attracted considerable attention in coordination chemistry[1] because these triazole derivatives can be used as flexible bridging ligands and linkers between transition metal ions[2-5]. In particular, some Fe (Ⅱ) complexes with substituted triazoles can show fascinating spin crossover properties and may find potential applications in molecular switches, display devices, sensors and data storages[6-9]. In our previous work, a series of 3, 4, 5-triarylsubstituted 1, 2, 4-triazoles with the pyridyl, phenyl, pyrrolyl, imidazolyl, benzimidazolyl and quinolyl groups and their metal complexes have been reported[10-24]. However, only a Co(Ⅱ) complex with thienyl substituted triaryltriazoles has been reported until now[25-26]. As a continuation of our exploration of asymmetrically substituted 1, 2, 4-triazoles, we prepared two new triaryltriazoles with a thienyl group: 3-(2-pyridyl)-4-phenyl-5-(2-thienyl)-1, 2, 4-triazole (L1) and 3-(2-pyridyl)-4-(p-chlorophenyl)-5-(2-thienyl)-1, 2, 4-triazole (L2) (Scheme 1). Herein we report the syntheses, crystal structures and spectral characterization of two mononuclear copper(Ⅱ) complexes based on the designed ligands: trans-[Cu(L1)2(MeOH)2] (ClO4)2 (1) and trans-[Cu(L2)2(ClO4)2]·2MeCN (2).

    Scheme 1

    Scheme 1.  Structures of ligands L1 and L2

    All chemicals and solvents purchased were of analytical grade. Solvents were purified by conventional methods. Melting points were determined with an X - 4 digital microscope melting - point apparatus (Beijing) and are uncorrected. Elemental analyses (C, H, N, S) were carried out with a Thermo Finnigan Flash 1112A elemental analyzer. FT - IR spectra were recorded on a Nicolet Avatar 380 FT -IR instrument using KBr disks from 4 000 to 400 cm-1. 1H NMR spectra were measured on a Bruker AM 400 MHz spectrometer in DMSO-d6 solution. Electrospray ionization mass spectra (ESI- MS) were recorded with a LCQ ADVANTAGE MAX mass spectrometer. Powder X - ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCE diffrac- tometer using Cu radiation (λ =0.154 06 nm) at 40 kV and 40 mA in a range of 5°~50°.

    Ligands L1 and L2 were synthesized based on our reported method[21].

    3-(2-pyridyl)-4-phenyl-5-(2-thienyl)-1, 2, 4-triazole (L1): m.p. 201~203 ℃. Anal. Calcd. for C17H12N4S (%): C, 67.08; H, 3.97; N, 18.41; S, 10.53. Found (%): C, 67.34; H, 4.24; N, 18.65; S, 10.81. IR (KBr, cm-1): 3 072(w), 1 585(m), 1 489(s), 1 438(m), 1 002(m), 798 (m), 722(m). 1H NMR (400 MHz): δ 8.31(d, 1H, Py-H), 8.03(d, 1H, Py-H), 7.91(t, 1H, Py-H), 7.66(d, 1H, thie- nyl-H), 7.54(t, 1H, Ph-H), 7.51(d, 2H, Ph-H), 7.47(d, 2H, Ph-H), 7.35(t, 1H, Py-H), 7.01(d, 1H, thienyl-H), 6.71(d, 1H, thienyl-H). ESI-MS: m/z=305.08, [L1+H]+.

    3-(2-pyridyl)-4-(p-chlorophenyl)-5-(2-thienyl)-1, 2, 4- triazole (L2): m. p. 192~194 ℃. Anal. Calcd. for C17H11N4SCl(%): C, 60.26; H, 3.27; N, 16.54; S, 9.46. Found(%): C, 60.42; H, 3.42; N, 16.39; S, 9.72. IR (KBr, cm-1): 3 054(w), 1 590(m), 1 498(s), 1 443(s), 1 089(m), 997(m), 841(m), 721(m). 1H NMR (400 MHz): δ 8.33(d, 1H, Py-H), 8.08(d, 1H, Py-H), 7.93(t, 1H, Py-H), 7.69(d, 1H, thienyl-H), 7.59(d, 2H, Ph-H), 7.57(d, 2H, Ph-H), 7.36(t, 1H, Py-H), 7.06(t, 1H, thienyl- H), 6.83(d, 1H, thienyl-H). ESI-MS: m/z=339.05, [L2+H]+.

    trans-[Cu(L1)2(MeOH)2] (ClO4)2 (1): A solution of Cu(NO3)2·3H2O (0.05 mmol) and NaClO4 (0.1 mmol) in anhydrous MeOH (4 mL) was added to a solution of L1 (0.1 mmol) in MeOH (4 mL). The mixture was stirred for 4 h at room temperature. The green precipitate was separated by filtration, and washed with water, then dried under vacuum to obtain complex 1 in a yield of 82%. The green block-shaped single crystals of 1 suitable for X-ray diffraction were obtained by slow evaporation from MeOH solution. Anal. Calcd. for C36H32Cl2CuN8O10S2(%): C, 46.23; H, 3.45; N, 11.98; S, 6.86. Found(%): C, 46.52; H, 3.51; N, 11.77; S, 6.54. IR (KBr, cm-1): 3 449(m, b), 3 082(w), 2 917(w), 1 617 (w), 1 562(m), 1 493(s), 1 388(m), 1 112(vs), 929(w), 859(w), 731(m), 626(s).

    trans-[Cu(L2)2(ClO4)2] ·2MeCN (2): The prepared procedure for 2 was the same as that for 1 except using L2 (0.1 mmol) to replace L1. The well-shaped single crystals of 2 suitable for X -ray diffraction were obtained by slow evaporation from MeCN solution. Yield: 87%. Anal. Calcd. for C38H28Cl4CuN10O8S2(%): C, 44.65; H, 2.76; N, 13.70; S, 6.27. Found(%): C, 44.27; H, 2.93; N, 13.82; S, 6.41. IR (KBr, cm-1): 3 077 (w), 2 921(w), 2 347(w), 1 613(m), 1 566(m), 1 493(s), 1 114(vs), 1 098(s), 930(w), 859(m), 726(m), 621(s).

    Suitable single crystals of 1 and 2 were selected for lattice parameter determination and collection of intensity data on a Bruker SMART APEX Ⅱ CCD diffractometer with a graphite - monochromated Mo (λ=0.071 073 nm) radiation using a φ-ω scan mode at 296(2) K. Multi-scan absorption corrections were applied to all intensity data using SADABS. The structures were solved by direct methods and refined on F2 by full-matrix least squares procedures using SHELXTL software[27]. All non-hydrogen atoms were anisotropically refined. All hydrogen atoms were fixed in calculated positions and refined isotropically. The ClO4- ions in 1 were disordered over two positions with an occupancy of 0.677(14) for O2, O3, O4 and O5 and 0.323(14) for O2A, O3A, O4A and O5A. The two O atoms of coordinated ClO4- in 2 were also disordered over two positions with an occupancy of 0.548(7) for O2 and O3 and 0.452(7) for O2A and O3A. The crystallographic data of 1 and 2 are summarized in Table 1 and the selected bond lengths and angles are given in Table 2.

    Table 1

    Table 1.  Crystal data and structure refinements for 1 and 2
    下载: 导出CSV
    Complex 1 2
    Empirical formula C36H32Cl2CuN8O10S2 C38H28Cl4CuN10O8S2
    Formula weight 935.25 1 022.16
    Crystal system Monoclinic Monoclinic
    Space group P21/c P21/c
    a/nm 0.846 57(19) 0.830 66(11)
    b/nm 1.547 9(4) 1.541 0(2)
    c /nm 1.566 7(4) 3.404 6(5)
    β/(°) 98.002(3) 93.925(2)
    V /nm3 2.033 0(8) 4.347 8(10)
    Z 2 4
    Dc/(g·cm-3) 1.528 1.562
    μ/mm-1 0.838 0.908
    F(000) 958 2 076
    Crystal size/mm 0.17×0.13×0.09 0.15×0.12×0.09
    θrange/ (°) 1.86~25.00 1.20~25.00
    Reflection collected 14 399 30 959
    Independent reflection 3 569 (Rint=0.033 3) 7 645 (Rint=0.033 9)
    Reflection observed [I > 2σ(I)] 2 877 6 127
    Data, restraint, parameter 3 569, 67, 306 7 645, 30, 589
    Goodness-of-fit on F2 1.066 1.071
    R1, wR2[I > 2σ(I)] 0.039 3, 0.102 5 0.050 7, 0.135 8
    R1, wR2(all data) 0.053 0, 0.108 8 0.064 9, 0.143 6
    ρ)max, (Δρ)min/(e·nm-3) 409, -332 654, -471

    Table 2

    Table 2.  Selected bond distances (nm) and bond angles (°) for 1 and 2
    下载: 导出CSV
    1
    Cu1-N1 0.205 6(2) Cu1-N2 0.198 4(2) Cu1-O1 0.240 6(2)
    N2-N3 0.138 2(3) S1-C8 0.171 7(3) S1-C11 0.170 0(4)
     
    N1-Cu1-N2 79.42(9) N1-Cu1-O1 84.20(9) N2-Cu1-O1 92.75(9)
    C1-N1-Cu1 126.4(18) C5-N1-Cu1 115.5(17) C6-N2-Cu1 115.3(3)
    2
    Cu1-N1 0.205 3(3) Cu1-N2 0.197 4(3) Cu1-O1 0.252 9(3)
    Cu1-N5 0.205 3(3) Cu1-N6 0.196 7(5) Cu1-O5 0.242 8(3)
    N2-N3 0.137 2(4) S1-C8 0.170 6(4) C15-Cl1 0.173 4(4)
    N6-N7 0.137 3(2) S2-C25 0.171 2(4) C32-Cl2 0.174 0(4)
     
    N1-Cu1-N2 80.46(11) N1-Cu1-O1 86.45(13) N2-Cu1-O1 89.08(12)
    N5-Cu1-N6 80.09(8) N5-Cu1-O5 91.69(7) N6-Cu1-O5 90.74(11)
    C1-N1-Cu1 127.4(2) C5-N1-Cu1 114.0(2) C6-N2-Cu1 113.8(2)
    C18-N5-Cu1 127.12(5) C22-N5-Cu1 114.49(8) C23-N6-Cu1 115.0(5)

    CCDC: 2423470, 1; 2423471, 2.

    Asymmetrically thienyl substituted 3, 4, 5-triaryl-1, 2, 4-triazoles (L1 and L2) reacted with Cu(NO3)2 ·3H2O and NaClO4 in molar ratio of 2: 1: 2 to lead the formation of two mononuclear complexes, trans-[Cu(L1)2 (MeOH)2](ClO4)2 (1) and trans-[Cu(L2)2 (ClO4)2]·2MeCN (2), which are stable in air. The yields for 1 and 2 were 82% and 87%, respectively. The elemental analyses were satisfactory and indicate that 1 contains one Cu(Ⅱ), two L1 ligands, two MeOH molecules and two ClO4- ions, and 2 has one Cu(Ⅱ), two L2 ligands, two MeCN molecules and two ClO4- anions.

    Although both 1 and 2 crystallize in the monoclinic space group P21/c (Fig. 1), Z=2 and c=1.566 7(4) nm in 1 while Z=4 and c=3.404 6(5) nm in 2. Thus, there is an inversion center at the Cu(Ⅱ) ion in 1 but none occurs in 2. The asymmetric unit of 1 is composed of half Cu(Ⅱ) cation, one L1 ligand, one coordinated MeOH molecule and one ClO4- anion, which is consistent with the elemental analysis result. The Cu1 ion of 1 is coordinated by four nitrogen atoms from two L1 ligands in the equatorial plane and two oxygen atoms from two MeOH molecules in the axial positions to form a distorted octahedral [CuN4O2] geometry. Each L1 ligand coordinates to Cu1 ion via N1 atom of the pyridyl and N2 atom of the triazole, similar to the coordinated modes in some related Cu(Ⅱ) complexes[14, 16, 24]. The thienyl group of L1 ligand does not take part in coordination, which is similar to the Co (Ⅱ) complex with a thienyl substituted triaryltriazole: trans-[CoL2(NCS)2] (L=3-(2-pyridyl)-4-(p-methoxyphenyl)-5-(2-thienyl)-1, 2, 4-triazole)[25]. However, the S1 atom of thienyl group in 1 does not orient to the phenyl ring, which is quite distinct from that observed in the trans-[CoL2(NCS)2] complex[25]. The distance of Cu1—O1 is 0.240 6(4) nm. The Cu—N bond lengths are within the normal ranges found for the octahedral Cu(Ⅱ) complexes[28-31]. Nevertheless, the Cu—N bond to the triazole nitrogen is 0.007 3 nm shorter than that to the pyridyl one. The analogous feature has been observed in the similar Cu(Ⅱ) complexes[24]. The ligand L1 in 1 is non - planar. The triazole makes dihedral angles of 6.2(4)°, 29.7(6)° and 64.6(3)° with the pyridyl ring, the thienyl ring and phenyl ring, respectively.

    Figure 1

    Figure 1.  Projection of structures of 1 and 2 with 30% thermal ellipsoids probability

    All H atoms, MeCN solvent and disordered O atoms are omitted for clarity; Symmetry code: i 1-x, 1-y, 1-z for 1

    Different from 1, the asymmetric unit of 2 consists of a Cu(Ⅱ) cation, two L2 ligands, two ClO4- ions and two MeCN molecules. The Cu(Ⅱ) ion of 2 is coordinated by four nitrogen atoms from two L2 ligands in the equatorial plane and two oxygen atoms from two ClO4- in the axial positions to build a distorted octahedral [CuN 4O2] geometry. Each L2 ligand coordinates to Cu1 atom via N1 (or N5) atom of the pyridyl and N2 (or N6) atom of the triazole whereas the thienyl group of L2 ligand is also uncoordinated, which is very similar to the coordination mode of L1 in 1. The distance of Cu1—O1 (0.253 nm) is longer than that of the Cu1— O5 (0.242 8 nm). The Cu—N bond lengths are within the normal ranges observed for some octahedral Cu(Ⅱ) complexes, whereas Cu—N bond to the triazole nitrogen is 0.008 6 nm shorter than that to the pyridyl one. The triazole ring containing N2 atom forms dihedral angles of 2.4(2)°, 6.9(9)° and 89.2(8)° with the pyridyl ring with N1 atom, the thienyl ring with S1 atom and phenyl ring with Cl1 atom, respectively. And the triazole ring having N6 atom makes dihedral angles of 4.1(7)°, 9.6(4)° and 87.6(3)° with the pyridyl ring with N5 atom, the thienyl ring with S2 atom and phenyl ring with Cl2 atom, respectively. Therefore, the pyridyl, triazole and thienyl ring of L2 in 2 is almost coplanar. Notably, the S atoms (S1 and S2) of thienyl groups in 2 orient to the p-chlorophenyl ring, which is similar to that found in the trans-[CoL2(NCS)2] complex[25].

    There are abundant intermolecular hydrogen bonds interactions in 1: (1) between MeOH and ClO4-anion (O1—H1A…O4); (2) between pyridyl and triazole ring (C1—H1…N3i); (3) between phenyl and ClO4-anion (C13—H13…O2iii and C17—H17…O2i); (4) between pyridyl and ClO4- anion (C3—H3…O5ii). In addition, there are an intramolecular edge - to - face C—H… π interaction involving C4—H4 and phenyl ring (H4…π 0.308 nm and ∠C4—H4…π =148°) and an intermolecular edge - to - face C—H… π interaction involving MeOH and pyridyl ring (H18C…π 0.326 nm and ∠C18—H18C… π=139°) (Fig. 2, Table 3). These interactions further connect the mononuclear 1 to form a 3D framework (Fig. 3).

    Figure 2

    Figure 2.  Hydrogen-bonding, C—H…π and ππ interactions in 1 and 2

    Symmetry codes: i 1-x, 1-y, 1-z; ii 2-x, 1-y, 1-z; iii x, 1/2-y, 1/2+z for 1; i x-1, y, z; ii 1+x, y, z; iii 2-x, 1-y, 1-z; iv 1-x, y-1/2, 1.5-z; v 1-x, 1-y, 1-z; vi-x, 1-y, 1-z for 2

    Table 3

    Table 3.  Hydrogen-bond geometry and C—H…π interactions in 1 and 2
    下载: 导出CSV
    D-H…A d(D-H)/nm d(H…A)/nm d(D…A)/nm ∠D-H…A/(°)
    1
    O1-H1A…O4 0.086 0.203 0.279 6(6) 148
    C1-H1…N3i 0.093 0.236 0.316 1(4) 144
    C3-H3…O5ii 0.093 0.261 0.335 9(3) 138
    C4-H4…π(Ph) 0.093 0.308 0.389 7(2) 148
    C13-H13…O2iii 0.093 0.257 0.342 8(7) 154
    C17-H17…O2i 0.093 0.260 0.349 2(8) 162
    C18-H18C…π(Py) 0.096 0.326 0.402 9(8) 139
    2
    C1-H1…N7 0.093 0.233 0.310 2(5) 140
    C2-H2…O2i 0.093 0.237 0.307 0(7) 131
    C4-H4…π(Ph) 0.093 0.284 0.368 6(7) 152
    C9-H9…O7ii 0.093 0.246 0.337 6(6) 168
    C10-H10…N9iii 0.093 0.268 0.354 0(7) 154
    C16-H16…O4iv 0.093 0.256 0.334 7(5) 142
    C17-H17…O3iv 0.093 0.251 0.310 0(9) 122
    C18-H18…N3 0.093 0.239 0.318 6(5) 143
    C19-H19…O7ii 0.093 0.263 0.331 4(5) 130
    C20-H20…O6v 0.093 0.258 0.350 8(7) 173
    C21-H21…π(Ph) 0.093 0.302 0.384 6(6) 150
    C26-H26…O1i 0.093 0.270 0.331 4(8) 123
    C27-H27…N10vi 0.093 0.259 0.350 5(6) 168
    Symmetry codes: i 1-x, 1-y, 1-z; ii 2-x, 1-y, 1-z; iii x, 1/2-y, 1/2+z for 1; i x-1, y, z; ii 1+x, y, z; iii 2-x, 1-y, 1-z; iv 1-x, y-1/2, 1.5-z; v 1-x, 1-y, 1-z; vi -x, 1-y, 1-z for 2.

    Figure 3

    Figure 3.  Three dimensional frameworks of 1 and 2

    Complex 2 has richer C—H…O interactions including: (1) between pyridyl and ClO4- (C2—H2… O2i, C19—H19…O7ii and C20—H20…O6v); (2) between thienyl and ClO4- (C9—H9…O7ii and C26—H26…O1i); (3) between phenyl and ClO4- (C16—H16… O4iv and C17—H17…O3iv). There are two kinds of C—H…N interactions in 2 including: (1) between pyridyl and triazole (C1—H1…N7 and C18—H18…N3); (2) between thienyl and MeCN (C10— H10…N9iii and C27—H27…N10vi). In addition, there are two kinds of π - π stacking interactions between triazole rings and the MeCN molecules (ππ (C≡N9)v 0.331 6 nm, ππ (C≡N10)v 0.330 4 nm) (Table 3, Fig. 2). All the interactions assemble the mononuclear 2 into a 3D network (Fig. 3).

    In the IR spectra of 1 and 2, a broad band at 3 447 cm-1 in 1 is due to the O—H stretching vibrations of MeOH, while a weak band at 2 347 cm-1 in 2 is assigned to characteristic C≡N stretching vibrations of MeCN[32]. A medium band at 1 562 cm-1 in 1 or 1 566 cm-1 in 2 can be assigned to the coordinated pyridyl ring vibrations. In 1 (or 2), the bands around 1 112 (or 1 114), 929 (or 930), 626 (or 621) cm-1 can be assigned to the IR-allowed ν mode, IR-forbidden ν mode and the non - degenerate ClO3 symmetrical bending frequency of the ClO4- anions, respectively[33]. Additionally, the stretching vibration of Cl - C(Ph) in 2 is found at 1 098 cm-1[34]. These features are in consistent with the X-ray analysis results.

    The PXRD patterns and simulated ones of 1 and 2 are shown in Fig. 4. The experimental patterns are in well agreement with the simulated ones from the single X -ray crystal data, revealing that the high phase purity of the bulk products of 1 and 2.

    Figure 4

    Figure 4.  PXRD patterns of 1 and 2

    Two new Cu(Ⅱ) complexes based on the thienyl and pyridyl substituted triarytriazole, trans-[Cu(L1)2 (MeOH)2](ClO4) 2 (1) and trans-[Cu(L2)2(ClO4)2]·2MeCN (2), have been synthesized and characterized by IR, PXRD and X-ray crystallography. The structural analyses reveal that two complexes have a similar pseudooctahedral [CuN4O2] core with two MeOH molecules in the trans -positions in 1 but two ClO4- ions in the trans- positions in 2.


    1. [1]

      Gütlich P, Garcia Y, Goodwin H A. Chem. Soc. Rev. , 2000, 29(6): 419427

    2. [2]

      Gütlich P, Goodwin H A. Top. Curr. Chem. , 2004, 234(24): 49-58

    3. [3]

      朱敦如, 齐丽, 程慧敏, 沈旋, 卢伟. 化学进展, 2009, 21(6): 11871198 https://www.cnki.com.cn/Article/CJFDTOTAL-JJXU201502009.htmZHU D R, QI L, CHENG H M, SHEN X, LU W. Prog. Chem. , 2009, 21(6): 1187-1198 https://www.cnki.com.cn/Article/CJFDTOTAL-JJXU201502009.htm

    4. [4]

      Gaspar A B, Seredyuk M, Gütlich P. J. Mol. Struct. , 2009, 924-926: 9-19

    5. [5]

      Nihei M, Shiga T, Maeda Y, Oshio H. Coord. Chem. Rev. , 2007, 251(21/22/23/24): 2606-2621

    6. [6]

      Zhu D R, Xu Y, Yu Z, Guo Z J, Sang H, Liu T, You X Z. Chem. Mater. , 2002, 14(2): 838-843 doi: 10.1021/cm010688u

    7. [7]

      Jonathan A, Kitchen S B. Coord. Chem. Rev. , 2008, 252(18/19/20): 2072-2092

    8. [8]

      Moulin A, Bibian M, Blayo A L, Ei Habnouni S, Martinez J, Fehrentz J A. Chem. Rev. , 2010, 110(4): 1809-1827 doi: 10.1021/cr900107r

    9. [9]

      Ge J Y, Chen Z Y, Zhang L, Liang X, Su J, Mohamedally K, Zuo J L. Angew. Chem. Int. Ed. , 2019, 58(26): 8789-8793 doi: 10.1002/anie.201903281

    10. [10]

      Zhou J, Yang J, Qi L, Shen X, Zhu D R, Xu Y, Song Y. Transition Met. Chem. , 2007, 32(6): 711-715 doi: 10.1007/s11243-007-0234-2

    11. [11]

      齐丽, 朱敦如, 解大景, 吴艳飞, 沈旋. 无机化学学报, 2008, 24(6): 868-872 doi: 10.3321/j.issn:1001-4861.2008.06.005QI L, ZHU D R, XIE D J, WU Y F, SHEN X. Chinese J. Inorg. Chem. , 2008, 24(6): 868-872 doi: 10.3321/j.issn:1001-4861.2008.06.005

    12. [12]

      Yang J, Bao W W, Ren X M, Xu Y, Shen X, Zhu D R. J. Coord. Chem. , 2009, 62(11): 1809-1816 doi: 10.1080/00958970802709333

    13. [13]

      Cheng H M, Zhu D R, Lu W, Xu R H, Shen X. J. Heterocycl. Chem. , 2010, 47(1): 210-213

    14. [14]

      Lu W, Zhu D R, Xu Y, Chen H M, Zhao J, Shen X. Struct. Chem. , 2010, 21(1): 237-244 doi: 10.1007/s11224-009-9569-y

    15. [15]

      赵建, 卢伟, 陈浪, 沈旋, 许岩, 朱敦如. 无机化学学报, 2011, 27(4): 160-163 https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ2014S1010.htmZHAO J, LU W, CHEN L, SHEN X, XU Y, ZHU D R. Chinese J. Inorg. Chem. , 2011, 27(4): 160-163 https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ2014S1010.htm

    16. [16]

      陈浪, 程慧敏, 江静静, 沈旋, 朱敦如. 无机化学学报, 2012, 28(2): 381-385 https://cdmd.cnki.com.cn/Article/CDMD-10542-1014243224.htmCHEN L, CHENG H M, JIANG J J, SHEN X, ZHU D R. Chinese J. Inorg. Chem. , 2012, 28(2): 381-385 https://cdmd.cnki.com.cn/Article/CDMD-10542-1014243224.htm

    17. [17]

      沈国平, 赵建, 陈浪, 孙峰, 沈旋, 朱敦如, 刘晓勤. 无机化学学报, 2012, 28(1): 159-163 https://cdmd.cnki.com.cn/Article/CDMD-10542-1014243224.htmSHEN G P, ZHAO J, CHEN L, SUN F, SHEN X, ZHU D R, LIU X Q. Chinese J. Inorg. Chem. , 2012, 28(1): 159-163 https://cdmd.cnki.com.cn/Article/CDMD-10542-1014243224.htm

    18. [18]

      Shen G P, Qi L, Wang L, Xu Y, Jiang J J, Zhu D R, Liu X Q, You X Z. Dalton Trans. , 2013, 42(28): 10144-10152 doi: 10.1039/c3dt50821h

    19. [19]

      Wang L, Jiang J J, Chen L, Shen X, Zhu D R. Inorg. Chem. Commun. , 2013, 28: 104-108 doi: 10.1016/j.inoche.2012.11.022

    20. [20]

      He X, Cao D Y, Jiang J J, Shen X, Zhu D R. J. Coord. Chem. , 2014, 67(2): 227-235 doi: 10.1080/00958972.2013.877585

    21. [21]

      Li B, Zhou Y F, Zhang S P, Qin T, Shen X, Xu Y, Zhu D R. J. Coord. Chem. , 2016, 69(18): 2647-2655 doi: 10.1080/00958972.2016.1214724

    22. [22]

      Zhou Y F, Zhang S P, Feng Z, Shen X, Zhu D R. J. Heterocycl. Chem. , 2017, 54(5): 2773-2780 doi: 10.1002/jhet.2880

    23. [23]

      Zhang S P, Feng Z, Wu B, Jiang J J, Zhu D R, He B. J. Coord. Chem. , 2018, 71(1): 46-56 doi: 10.1080/00958972.2018.1425838

    24. [24]

      冯哲, 高健飞, 李刚, 朱敦如. 无机化学学报, 2020, 36(6): 11691175 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201502001.htmFENG Z, GAO J F, LI G, ZHU D R. Chinese J. Inorg. Chem. , 2020, 36(6): 1169-1175 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201502001.htm

    25. [25]

      Chen S S, Zhang S P, Li H Q, Shao S C. Chinese J. Struct. Chem. , 2010, 29(3): 341-346

    26. [26]

      陈水生, 乔瑞, 张淑萍, 时兆菊, 盛良全. 大学化学, 2014, 29(6): 5154 https://cdmd.cnki.com.cn/Article/CDMD-10110-1017167161.htmCHEN S S, QIAO R, ZHANG S P, SHI Z J, SHENG L Q. University Chemistry, 2014, 29(6): 51-54 https://cdmd.cnki.com.cn/Article/CDMD-10110-1017167161.htm

    27. [27]

      Sheldrick G M. Acta Crystallogr. Sect. A, 2008, A64: 112-122

    28. [28]

      Wu Y F, Zhu D R, Song Y, Shen K, Shen Z, Shen X, Xu Y. Inorg. Chem. Commun. , 2009, 12(10): 959-963 doi: 10.1016/j.inoche.2009.07.016

    29. [29]

      卢伟, 谢大景, 王作祥, 沈旋, 许岩, 朱敦如. 无机化学学报, 2010, 26(4): 717-720 https://www.cnki.com.cn/Article/CJFDTOTAL-SHXJ201402004.htmLU W, XIE D J, WANG Z X, SHEN X, XU Y, ZHU D R. Chinese J. Inorg. Chem. , 2010, 26(4): 717-720 https://www.cnki.com.cn/Article/CJFDTOTAL-SHXJ201402004.htm

    30. [30]

      Shen G P, Zhao J, Jiang J J, Liu Q, Shen X, Xu Y, Zhu D R, Liu X Q. J. Mol. Struct. , 2011, 1002(1/2/3): 159-166

    31. [31]

      Chen L, Zhao J, Shen G P, Shen X, Xu Y, Zhu D R. J. Coord. Chem. , 2011, 64(22): 3980-3991 doi: 10.1080/00958972.2011.634909

    32. [32]

      Hu T P, Zhao Q N, Huo L Q, Gao L L, Zhang J, Wang X Q, Fan L M. CrystEngComm, 2018, 20(30): 4291-4296 doi: 10.1039/C8CE00661J

    33. [33]

      Zhu D, Song Y, Liu Y, Xu Y, Zhang Y, You X, Raj S S S, Fun H K. Transition Met. Chem. , 2000, 25(5): 589-593 doi: 10.1023/A:1007037326099

    34. [34]

      Zhao J, Cheng H M, Shen G P, Xu Y, Zhu D R. J. Coord. Chem. , 2011, 64(6): 942-951 doi: 10.1080/00958972.2011.558897

  • Scheme 1  Structures of ligands L1 and L2

    Figure 1  Projection of structures of 1 and 2 with 30% thermal ellipsoids probability

    All H atoms, MeCN solvent and disordered O atoms are omitted for clarity; Symmetry code: i 1-x, 1-y, 1-z for 1

    Figure 2  Hydrogen-bonding, C—H…π and ππ interactions in 1 and 2

    Symmetry codes: i 1-x, 1-y, 1-z; ii 2-x, 1-y, 1-z; iii x, 1/2-y, 1/2+z for 1; i x-1, y, z; ii 1+x, y, z; iii 2-x, 1-y, 1-z; iv 1-x, y-1/2, 1.5-z; v 1-x, 1-y, 1-z; vi-x, 1-y, 1-z for 2

    Figure 3  Three dimensional frameworks of 1 and 2

    Figure 4  PXRD patterns of 1 and 2

    Table 1.  Crystal data and structure refinements for 1 and 2

    Complex 1 2
    Empirical formula C36H32Cl2CuN8O10S2 C38H28Cl4CuN10O8S2
    Formula weight 935.25 1 022.16
    Crystal system Monoclinic Monoclinic
    Space group P21/c P21/c
    a/nm 0.846 57(19) 0.830 66(11)
    b/nm 1.547 9(4) 1.541 0(2)
    c /nm 1.566 7(4) 3.404 6(5)
    β/(°) 98.002(3) 93.925(2)
    V /nm3 2.033 0(8) 4.347 8(10)
    Z 2 4
    Dc/(g·cm-3) 1.528 1.562
    μ/mm-1 0.838 0.908
    F(000) 958 2 076
    Crystal size/mm 0.17×0.13×0.09 0.15×0.12×0.09
    θrange/ (°) 1.86~25.00 1.20~25.00
    Reflection collected 14 399 30 959
    Independent reflection 3 569 (Rint=0.033 3) 7 645 (Rint=0.033 9)
    Reflection observed [I > 2σ(I)] 2 877 6 127
    Data, restraint, parameter 3 569, 67, 306 7 645, 30, 589
    Goodness-of-fit on F2 1.066 1.071
    R1, wR2[I > 2σ(I)] 0.039 3, 0.102 5 0.050 7, 0.135 8
    R1, wR2(all data) 0.053 0, 0.108 8 0.064 9, 0.143 6
    ρ)max, (Δρ)min/(e·nm-3) 409, -332 654, -471
    下载: 导出CSV

    Table 2.  Selected bond distances (nm) and bond angles (°) for 1 and 2

    1
    Cu1-N1 0.205 6(2) Cu1-N2 0.198 4(2) Cu1-O1 0.240 6(2)
    N2-N3 0.138 2(3) S1-C8 0.171 7(3) S1-C11 0.170 0(4)
     
    N1-Cu1-N2 79.42(9) N1-Cu1-O1 84.20(9) N2-Cu1-O1 92.75(9)
    C1-N1-Cu1 126.4(18) C5-N1-Cu1 115.5(17) C6-N2-Cu1 115.3(3)
    2
    Cu1-N1 0.205 3(3) Cu1-N2 0.197 4(3) Cu1-O1 0.252 9(3)
    Cu1-N5 0.205 3(3) Cu1-N6 0.196 7(5) Cu1-O5 0.242 8(3)
    N2-N3 0.137 2(4) S1-C8 0.170 6(4) C15-Cl1 0.173 4(4)
    N6-N7 0.137 3(2) S2-C25 0.171 2(4) C32-Cl2 0.174 0(4)
     
    N1-Cu1-N2 80.46(11) N1-Cu1-O1 86.45(13) N2-Cu1-O1 89.08(12)
    N5-Cu1-N6 80.09(8) N5-Cu1-O5 91.69(7) N6-Cu1-O5 90.74(11)
    C1-N1-Cu1 127.4(2) C5-N1-Cu1 114.0(2) C6-N2-Cu1 113.8(2)
    C18-N5-Cu1 127.12(5) C22-N5-Cu1 114.49(8) C23-N6-Cu1 115.0(5)
    下载: 导出CSV

    Table 3.  Hydrogen-bond geometry and C—H…π interactions in 1 and 2

    D-H…A d(D-H)/nm d(H…A)/nm d(D…A)/nm ∠D-H…A/(°)
    1
    O1-H1A…O4 0.086 0.203 0.279 6(6) 148
    C1-H1…N3i 0.093 0.236 0.316 1(4) 144
    C3-H3…O5ii 0.093 0.261 0.335 9(3) 138
    C4-H4…π(Ph) 0.093 0.308 0.389 7(2) 148
    C13-H13…O2iii 0.093 0.257 0.342 8(7) 154
    C17-H17…O2i 0.093 0.260 0.349 2(8) 162
    C18-H18C…π(Py) 0.096 0.326 0.402 9(8) 139
    2
    C1-H1…N7 0.093 0.233 0.310 2(5) 140
    C2-H2…O2i 0.093 0.237 0.307 0(7) 131
    C4-H4…π(Ph) 0.093 0.284 0.368 6(7) 152
    C9-H9…O7ii 0.093 0.246 0.337 6(6) 168
    C10-H10…N9iii 0.093 0.268 0.354 0(7) 154
    C16-H16…O4iv 0.093 0.256 0.334 7(5) 142
    C17-H17…O3iv 0.093 0.251 0.310 0(9) 122
    C18-H18…N3 0.093 0.239 0.318 6(5) 143
    C19-H19…O7ii 0.093 0.263 0.331 4(5) 130
    C20-H20…O6v 0.093 0.258 0.350 8(7) 173
    C21-H21…π(Ph) 0.093 0.302 0.384 6(6) 150
    C26-H26…O1i 0.093 0.270 0.331 4(8) 123
    C27-H27…N10vi 0.093 0.259 0.350 5(6) 168
    Symmetry codes: i 1-x, 1-y, 1-z; ii 2-x, 1-y, 1-z; iii x, 1/2-y, 1/2+z for 1; i x-1, y, z; ii 1+x, y, z; iii 2-x, 1-y, 1-z; iv 1-x, y-1/2, 1.5-z; v 1-x, 1-y, 1-z; vi -x, 1-y, 1-z for 2.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  47
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2021-03-10
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-11-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章