Citation: YAO Shou-Guang, DOU Fei, LIU Dun, CHENG Jie. Electrochemical Performance of Mn and Mg Co-doped Ni(OH)2[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 95-102. doi: 10.11862/CJIC.2021.014 shu

Electrochemical Performance of Mn and Mg Co-doped Ni(OH)2

  • Corresponding author: YAO Shou-Guang, zjyaosg@126.com
  • Received Date: 16 July 2020
    Revised Date: 12 November 2020

Figures(7)

  • To reduce costs and improve performance of the positive electrode materials, the buffer solution method was used to prepare manganese and magnesium doped nickel hydroxide, labeled as Ni0.82Mn0.18-xMgx(OH)2 (x=0.06, 0.09, 0.12). XRD, XPS and SEM tests were used to characterize the crystal structure, manganese valence state and morphology of the samples. Cyclic voltammetry and constant current charge-discharge tests were used to study the influence of Mn and Mg doping ratio on the electrochemical performance of Ni(OH)2. The results showed that the samples doped Mn and Mg were all β-phase and the crystal particles were smaller; Ni0.82Mn0.09Mg0.09(OH)2 showed excellent electrode reaction reversibility and charge-discharge performance. Specific discharge capacity (290.6 mAh·g-1) of Ni0.82Mn0.09Mg0.09(OH)2 was better than that of the commercial β-Ni(OH)2 (281.1 mAh·g-1) at 100 mA·g-1; moreover, after cycling for 30 cycles at a current density of 500 mA·g-1, the specific discharge capacity of Ni0.82Mn0.09Mg0.09(OH)2 was no decay, indicating its cycle stability is better than that of the commercial β-Ni(OH)2.
  • 加载中
    1. [1]

      CHENG J. CN101127393. 2008-02-20.

    2. [2]

      Cheng J, Zhang L, Yang Y S, Yue H W, Gao P C, Xin D W. Electrochem. Commun., 2007, 9(11):2639-2642  doi: 10.1016/j.elecom.2007.08.016

    3. [3]

      Zhang L, Cheng J, Yang Y S, Yue H W, Xin D W, Gao P C. J. Power Sources, 2008, 179:381-387  doi: 10.1016/j.jpowsour.2007.12.088

    4. [4]

      Cheng J, Wen Y H, Cao G P, Yang Y S. J. Power Sources, 2011, 196(3):1589-1592  doi: 10.1016/j.jpowsour.2010.08.009

    5. [5]

      Wang Y X, Hu Z A, Wu H Y. Mater. Chem. Phys., 2011, 126(3):580-583

    6. [6]

      Zhang Q, Xu Y H, Wang X L. Mater. Chem. Phys., 2004, 86(2):293-297

    7. [7]

      CHANG Y Q, CHEN Y L, WANG H W, FU G R, JIN X Q, XIE L J, HU Z A. New Chemical Materials, 2011, 39(2):79-83
       

    8. [8]

      PAN Y, LEI H, GUO R G, HAN X, YU L M, JIANG W Q. Chemical Reagents, 2014, 36(10):949-952
       

    9. [9]

      WEN S S, LIANG X L, YAO J H, PAN G L, LI Y W, ZHANG L Z. Rare Metal Materials Engineering, 2015, 44(12):3151-3155
       

    10. [10]

      Wu X H, Feng Q P, Wang M, Huang G W. J. Power Sources, 2016, 329:170-178  doi: 10.1016/j.jpowsour.2016.08.072

    11. [11]

      LÜ X. Thesis for the Master of Kunming University of Science and Technology. 2017.

    12. [12]

      Miao C C, Zhu Y J, Huang L G, Zhao T Q. Ionics, 2015, 21(8):2295-2302  doi: 10.1007/s11581-015-1387-1

    13. [13]

      Zhao L, Liu Z H, Jin L. Trans. Nonferrous Met. Soc. China, 2013, 23(4):1033-1038  doi: 10.1016/S1003-6326(13)62563-7

    14. [14]

      Masound S, Hamideh S, Omid A, Fatemeh D. J. Cluster Sci., 2013, 24(1):365-376  doi: 10.1007/s10876-013-0558-3

    15. [15]

      Shangguan E B, Chang Z R, Tang H G, Yuan X Z, Wang H J. Int. J. Hydrogen Energy, 2010, 35(18):9716-9724  doi: 10.1016/j.ijhydene.2010.06.096

    16. [16]

      LI X F, LI Z, DONG H C, XIA T C. Journal of Zhengzhou University of Light Industry (Natural Science), 2012, 27(1):7-11
       

    17. [17]

      LI X F, LI Z, SONG Y H, DONG H C, XIA T C. Chinese Journal of Power Sources, 2013, 37(2):240-242, 300
       

    18. [18]

      HAN E S, KANG H X, DONG Q, WEI Z H, YUAN Z Q. Chinese Journal of Applied Chemistry, 2007(9):84-87
       

    19. [19]

      WANG X, FU X Z, LIANG Y, LIAO D W. Chinese Journal of Power Sources, 2007(9):732-735
       

    20. [20]

      LIU C J, CHEN S J, LI P P. Rare Metal Materials Engineering, 2012, 41(S2):348-352
       

    21. [21]

      CHEN J M, SUN J T, SONG Y H. Journal of Synthetic Crystals, 2016(6):1539-1543
       

    22. [22]

      YAO S G, DOU F, XING R Y, CHENG J, XIAO M. Chinese J. Inorg. Chem., 2019, 35(8):1403-1410
       

    23. [23]

      PAN G X, CAO F, TANG P S, CHEN H F, XU M H, TONG Y H. Journal of Minerals, 2012, 32(2):244-248
       

    24. [24]

      XIAO M, XING R Y, YAO S G, CHENG J, SHEN Y J, YANG Y S. J. Inorg. Mater., 2019, 34(7):703-708
       

    25. [25]

      WANG J R, GONG J B, YANG Z Y. Powder Metallurgy Industry, 2012, 22(2):22-26
       

    26. [26]

      ZHI H J. Xinjiang Youse Jinshu, 2003(1):25-27

    27. [27]

      PENG M X, SHEN X Q, WEI Y H. Materials Reports, 2007, 22(11):121-124
       

    28. [28]

      Klug H P, Alexander L E C. X-ray Diffraction Procedures for Poly-crystalline and Amorphous Materials. 2nd ed. New York; Wiley-Inter-science, 1974:511-517

    29. [29]

      Meyer M, Bée A, Talbot D, Cabuil V, Boyer J M, Répetti B, Garrigos R. J. Colloid Interface Sci., 2004, 277:309-315

    30. [30]

      LI Y J, HUANG Y G, OU L F, YANG W, FENG Y Y, LU Z T. Carbon Techniques, 2019, 38(1):28-31, 40
       

    31. [31]

      SUN H F, JIANG W Q, YU L M, FU Z Z, GUO R G, LI T, YANG H. Materials Reports, 2011, 25(4):49-52
       

    32. [32]

      WANG Y M, ZHANG Y L, MA L L, LEI D, WEI Z G. Journal of Lanzhou University of Technology, 2014, 40(3):5-9
       

    33. [33]

      LI X S, HAO W X, ZHANG Y Q, MENG J, YU H Y. J. Funct. Mater., 2016, 8(47):8200-8204, 8210
       

    34. [34]

      LUO F C, CHEN Q Y, LI X H. Chinese Journal of Power Sources, 2007, 31(8):640-643
       

    35. [35]

      WU M Y. Thesis for the Master of Zhejiang University. 2006.

    36. [36]

      DENG M M, ZHANG D W, SHAO Y, HE X D, CEHN C H. Chin. J. Chem. Phys., 2020, 33(4):485-494
       

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

Metrics
  • PDF Downloads(3)
  • Abstract views(1287)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return