Citation: TU Fang-Fang, XIE Jian, GUO Feng, ZHAO Xin-Bing, WANG Yu-Ping, CHEN Dong, XIANG Jia-Yuan, CHEN Jian. Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(8): 1515-1523. doi: 10.11862/CJIC.2020.169 shu

Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte

  • Corresponding author: TU Fang-Fang, fangfangtu1990@126.com
  • Received Date: 7 March 2020
    Revised Date: 7 May 2020

Figures(4)

  • A solid composite electrolyte was prepared through a solution-casting method with polypropylene carbonate (PPC) and polyethylene oxide (PEO) as polymer blends, and Li6.4La3Zr1.4Ta0.6O12(LLZTO) particles as multifunctional fillers. The effects of LLZTO content and PPC/PEO mass ratio on the ionic conductivity of solid composite electrolyte were studied. Results show that the ionic conductivity at room temperature reached the highest value of 1.14×10-4 S·cm-1 when LLZTO content was 30%(w/w) and the mass ratio of PPC to PEO was 1:1. The incorporation of LLZTO and PPC into PEO repressed the crystallinity of polymer electrolyte, increased ionic conductivity, electrochemical stability window (4.7 V) and Li+ transference number (0.25), and reinforces interfacial stability between solid electrolyte and lithium anode. The capacity retention rates of the LiFePO4/Li cell with solid composite electrolyte remain 82% after 70 cycles at room temperature and 79% after 100 cycles at 60℃. The discharge capacity reaches 120.7 and 112.6 mAh·g-1 at 0.5C and 1C, respectively.
  • 加载中
    1. [1]

      Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3):587-603
       

    2. [2]

      Quartarone E, Mustarelli P. Chem. Soc. Rev., 2011, 40(5):2525-2540
       

    3. [3]

      ZHANG Yong-Long, XIA Hui-Ling, LIN Jiu, et al. Energy Storage Sci. Technol., 2018, 7(6):994-1002
       

    4. [4]

      Bates J B, Dudney N J, Neudecker B, et al. Solid State Ionics, 2000, 135(1/2/3/4):33-45
       

    5. [5]

      Kerman K, Luntz A, Viswanathan V, et al. J. Electrochem. Soc., 2017, 164(7):A1731-A1744
       

    6. [6]

      Zhang Z Z, Shao Y J, Lotsch B, et al. Energy Environ. Sci., 2018, 11(8):1945-1976
       

    7. [7]

      Kato Y, Hori S, Saito T, et al. Nat. Energy, 2016, 1(4):16030
       

    8. [8]

      Abhilash K P, Selvin P C, Nalini B, et al. J. Phys. Chem. Solids, 2016, 91:114-121
       

    9. [9]

      Arbi K, Jimenez R, Šalkus T, et al. Solid State Ionics, 2015, 271:28-33
       

    10. [10]

      Deng Y, Eames C, Fleutot B, et al. ACS Appl. Mater. Interfaces, 2017, 9(8):7050-7058
       

    11. [11]

      LÜ Xiao-Juan, WU Ya-Nan, MENG Fan-Li, et al. J. Ceram., 2019, 40(2):148-152
       

    12. [12]

      SUN Qiu-Shi, ZHU Chong-Jia, XIE Jian, et al. Chinese J. Inorg. Chem., 2019, 35(5):865-870
       

    13. [13]

      Thangadurai V, Kaack H, Weppner W J F. J. Am. Ceram. Soc., 2003, 86(3):437-440
       

    14. [14]

      Gao Z H, Sun H B, Fu L, et al. Adv. Mater., 2018, 30(17):1705702

    15. [15]

      Fu K, Gong Y H, Dai J Q, et al. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(26):7094-7099

    16. [16]

      Zhu P, Yan C Y, Dirican M, et al. J. Mater. Chem. A, 2018, 6(10):4279-4285
       

    17. [17]

      Liang J Y, Zeng X X, Zhang X D, et al. J. Am. Chem. Soc., 2019, 141(23):9165-9169

    18. [18]

      Zhang X, Liu T, Zhang S F, et al. J. Am. Chem. Soc., 2017, 139(39):13779-13785

    19. [19]

      Zhang J J, Zhao J H, Yue L P, et al. Adv. Energy Mater., 2015, 5(24):1501082
       

    20. [20]

      YANG Pei-Xia, CUI Wen-Yu, XING Dong-Jun, et al. Chinese J. Inorg. Chem., 2011, 27(11):2143-2149
       

    21. [21]

      Stephan A M. Eur. Polym. J., 2006, 42(1):21-42

    22. [22]

      Chen L, Li Y T, Li S P, et al. Nano Energy, 2018, 46:176-184
       

    23. [23]

      Yue L P, Ma J, Zhang J J, et al. Energy Storage Mater., 2016, 5:139-164

    24. [24]

      Zhang Y H, Lu W, Cong L N, et al. J. Power Sources, 2019, 420:63-72

    25. [25]

      DONG Tian-Tian, ZHANG Jian-Jun, CHAI Jing-Chao, et al. Acta Polym. Sin., 2017, 6:906-921

    26. [26]

      Huang H J, Ding F, Zhong H, et al. J. Mater. Chem. A, 2018, 6(20):9539-9549

    27. [27]

      Yu X Y, Xiao M, Wang S J, et al. J. Appl. Polym. Sci., 2010, 115(5):2718-2722
       

    28. [28]

      Logéat A, Köhler T, Eisele U, et al. Solid State Ionics, 2012, 206(3):33-38
       

    29. [29]

      Zhao Y R, Wu C, Peng G, et al. J. Power Sources, 2016, 301:47-53
       

    30. [30]

      QI De-Jiang, BI Xiao-Guo, RU Hong-Qiang. J. Mater. Metall., 2011, 10(2):125-135

    31. [31]

      Zheng J, Hu Y Y. ACS Appl. Mater. Interfaces, 2018, 10(4):4113-4120
       

    32. [32]

      Li Z, Huang H M, Zhu J K, et al. ACS Appl. Mater. Interfaces, 2019, 11(1):784-791
       

    33. [33]

      Chen F, Yang D J, Zha W P, et al. Electrochim. Acta, 2017, 258:1106-1114

    34. [34]

      GUO Tian, CHEN Yu-Qi, HE Hong-Cai, et al. Electron. Compon. Mater., 2019, 38(7):25-31
       

    35. [35]

      Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38):19218-19253
       

    36. [36]

      Zhang J J, Zang X, Wen H J, et al. J. Mater. Chem. A, 2017, 5(10):4940-4948
       

    37. [37]

      Zhang Y H, Chen F, Tu R, et al. J. Power Sources, 2014, 268:960-964
       

    38. [38]

      Zhou J, Fedkiw P S. Solid State Ionics, 2004, 166(3/4):275-293
       

    39. [39]

      Evans J, Vincent C A, Bruce P G. Polymer, 1987, 28(13):2324-2328
       

    40. [40]

      Chen L, Liu Y C, Fan L Z. J. Electrochem. Soc., 2017, 164(9):A1834-A1840

    41. [41]

      Li D, Chen L, Wang T S, et al. ACS Appl. Mater. Interfaces, 2018, 10(8):7069-7078
       

    42. [42]

      Zhang J X, Zhao N, Zhang M, et al. Nano Energy, 2016, 28:447-454
       

  • 加载中
    1. [1]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    7. [7]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(59)
  • Abstract views(4275)
  • HTML views(1816)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return