Application of Near-Infrared Upconversion Nanotransducers in Optogenetic Regulation
- Corresponding author: XING Ben-Gang, Bengang@ntu.edu.sg
Citation:
WANG Zhi-Min, HU Ming, XING Ben-Gang. Application of Near-Infrared Upconversion Nanotransducers in Optogenetic Regulation[J]. Chinese Journal of Inorganic Chemistry,
;2020, 36(6): 969-982.
doi:
10.11862/CJIC.2020.122
Ackerman M J, Clapham D E. New Engl. J. Med., 1997, 336: 1575-1586
doi: 10.1056/NEJM199705293362207
Dunlop J, Bowlby M, Peri R, et al. Nat. Rev. Drug Discov., 2008, 7:358
doi: 10.1038/nrd2552
Loewenstein W R. Physiol. Rev., 1981, 61:829-913
doi: 10.1152/physrev.1981.61.4.829
Alexander S P, Mathie A, Peters J A. Br. J. Pharmacol., 2011, 164:S137-S174
doi: 10.1111/j.1476-5381.2011.01649_5.x
Reuter H. Nature, 1983, 301:569-574
doi: 10.1038/301569a0
Miller C. Neuron, 1989, 2:1195-1205
doi: 10.1016/0896-6273(89)90304-8
Armstrong C M, Hille B. Neuron, 1998, 20:371-380
doi: 10.1016/S0896-6273(00)80981-2
Nicolelis M A. Nat. Rev. Neurosci., 2003, 4:417-422
doi: 10.1038/nrn1105
Zamponi G W. Nat. Rev. Drug Discov., 2016, 15:19-34
doi: 10.1038/nrd.2015.5
Erwin B, Jr M M, Baker K K. Neurol. Res., 2000, 22:259-266
doi: 10.1080/01616412.2000.11740668
Kringelbach M L, Jenkinson N, Owen S L, et al. Nat. Rev. Neurosci., 2007, 8:623-635
doi: 10.1038/nrn2196
Gautier A, Gauron C, Volovitch M, et al. Nat. Chem. Biol., 2014, 10:533-541
doi: 10.1038/nchembio.1534
Ankenbruck N, Courtney T, Naro Y, et al. Angew. Chem. Int. Ed., 2018, 57:2768-2798
doi: 10.1002/anie.201700171
Grier D G. Nature, 2003, 424:810
doi: 10.1038/nature01935
Fenno L, Yizhar O, Deisseroth K. Annu. Rev. Neurosci., 2011, 34:389-412
doi: 10.1146/annurev-neuro-061010-113817
Yizhar O, Fenno L E, Davidson T J, et al. Neuron, 2011, 71: 9-34
doi: 10.1016/j.neuron.2011.06.004
Repina N A, Rosenbloom A, Mukherjee A, et al. Annu. Rev. Chem. Biomol. Eng., 2017, 8:13-39
doi: 10.1146/annurev-chembioeng-060816-101254
Rein M L, Deussing J M. Mol. Genet. Genomics, 2012, 287: 95-109
doi: 10.1007/s00438-011-0663-7
Zhang F, Vierock J, Yizhar O, et al. Cell, 2011, 147:1446- 1457
doi: 10.1016/j.cell.2011.12.004
Deisseroth K. Nat. Neurosci., 2015, 18:1213-1225
doi: 10.1038/nn.4091
Han X. ACS Chem. Neurosci., 2012, 3:577-584
doi: 10.1021/cn300065j
Husser M. Nat. Methods, 2014, 11:1012-1014
doi: 10.1038/nmeth.3111
Knpfel T, Lin M Z, Levskaya A, et al. J. Neurosci., 2010, 30: 14998-15004
doi: 10.1523/JNEUROSCI.4190-10.2010
Lin J Y. Exp. Physiol., 2011, 96:19-25
doi: 10.1113/expphysiol.2009.051961
Kale R P, Kouzani A Z, Walder K, et al. Neurophotonics, 2015, 2:031206
doi: 10.1117/1.NPh.2.3.031206
Rossi M A, Go V, Murphy T, et al. Front. Integr. Neurosci., 2015, 9:8
Piatkevich K D, Subach F V, Verkhusha V V. Chem. Soc. Rev., 2013, 42:3441-3452
doi: 10.1039/c3cs35458j
Redchuk T A, Omelina E S, Chernov K G, et al. Nat. Chem. Biol., 2017, 13:633-639
doi: 10.1038/nchembio.2343
Urmann D, Lorenz C, Linker S M, et al. Photochem. Photobiol., 2017, 93:782-795
doi: 10.1111/php.12741
Zhang F, Prigge M, Beyrière F, et al. Nat. Neurosci., 2008, 11: 631-633
doi: 10.1038/nn.2120
Huang K, Dou Q, Loh X J. RSC Adv., 2016, 6:60896-60906
doi: 10.1039/C6RA11289G
Shah S, Solanki A, Lee K B. Acc. Chem. Res., 2015, 49:17- 26
Scaini D, Ballerini L. Curr. Opin. Neurobiol., 2018, 50:50-55
Wang F, Liu X G. Chem. Soc. Rev., 2009, 38:976-989
doi: 10.1039/b809132n
Chen G Y, Qiu H L, Prasad P N, et al. Chem. Rev., 2014, 114:5161-5214
doi: 10.1021/cr400425h
Idris N M, Jayakumar M K G, Bansal A, et al. Chem. Soc. Rev., 2015, 44:1449-1478
doi: 10.1039/C4CS00158C
Wen S H, Zhou J J, Zheng K Z, et al. Nat. Commun., 2018, 9:2415
doi: 10.1038/s41467-018-04813-5
Yang Y M, Shao Q, Deng R R, et al. Angew. Chem. Int. Ed., 2012, 124:3179-3183
doi: 10.1002/ange.201107919
Hososhima S, Yuasa H, Ishizuka T, et al. Sci. Rep., 2015, 5: 16533
doi: 10.1038/srep16533
Wang Z M, Hu M, Ai X Z, et al. Adv. Biosyst., 2019, 3: 1800233
doi: 10.1002/adbi.201800233
Boyden E S, Zhang F, Bamberg E, et al. Nat. Neurosci., 2005, 8:1263-1268
doi: 10.1038/nn1525
Lin J Y, Lin M Z, Steinbach P, et al. Biophys. J., 2009, 96: 1803-1814
doi: 10.1016/j.bpj.2008.11.034
Gunaydin L A, Yizhar O, Berndt A, et al. Nat. Neurosci., 2010, 13:387-392
doi: 10.1038/nn.2495
Berndt A, Yizhar O, Gunaydin L A, et al. Nat. Neurosci., 2009, 12:229-234
doi: 10.1038/nn.2247
Klapoetke N C, Murata Y, Kim S S, et al. Nat. Methods, 2014, 11:338-346
doi: 10.1038/nmeth.2836
Yizhar O, Fenno L, Prigge M, et al. Nature, 2011, 477:171- 178
doi: 10.1038/nature10360
Zhang F, Wang L P, Brauner M, et al. Nature, 2007, 446: 633-639
doi: 10.1038/nature05744
Wietek J, Wiegert J S, Adeishvili N, et al. Science, 2014, 344:409-412
doi: 10.1126/science.1249375
Govorunova E G, Sineshchekov O A, Janz R, et al. Science, 2015, 349:647-650
doi: 10.1126/science.aaa7484
Chow B Y, Han X, Dobry A S, et al. Nature, 2010, 463:98- 102
doi: 10.1038/nature08652
Towne C, Thompson K R. Curr. Protoc. Pharmacol., 2016, 75: 11-19
Deisseroth K, Anikeeva P. US Patent, 9522288. 2016-12-20.
Shah S, Liu J J, Pasquale N, et al. Nanoscale, 2015, 7:16571 -16577
doi: 10.1039/C5NR03411F
He L, Zhang Y W, Ma G L, et al. Elife, 2015, 4:e10024
doi: 10.7554/eLife.10024
Hososhima S, Yuasa H, Ishizuka T, et al. International Society for Optics and Photonics: Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics Ⅱ, 2015:93052R
Wang Y, Lin X D, Chen X, et al. Biomaterials, 2017, 142: 136-148
doi: 10.1016/j.biomaterials.2017.07.017
Bansal A, Liu H C, Jayakumar M K G, et al. Small, 2016, 12:1732-1743
doi: 10.1002/smll.201503792
Pliss A, Ohulchanskyy T Y, Chen G Y, et al. ACS Photonics, 2017, 4:806-814
doi: 10.1021/acsphotonics.6b00475
Yadav K, Chou A C, Ulaganathan R K, et al. Nanoscale, 2017, 9:9457-9466
doi: 10.1039/C7NR03246C
Wang Y, Xie K, Yue H B, et al. Nanoscale, 2020, 12:2406- 2414
doi: 10.1039/C9NR07583F
Ai X Z, Lyu L N, Zhang Y, et al. Angew. Chem. Int. Ed., 2017, 56:3031-3035
doi: 10.1002/anie.201612142
Lin X D, Wang Y, Chen X, et al. Adv. Healthcare Mater., 2017, 6:1700446
doi: 10.1002/adhm.201700446
Wu X, Zhang Y W, Takle K, et al. ACS Nano, 2016, 10:1060- 1066
doi: 10.1021/acsnano.5b06383
Lin X D, Chen X, Zhang W C, et al. Nano Lett., 2018, 18: 948-956
doi: 10.1021/acs.nanolett.7b04339
Chen S, Weitemier A Z, Zeng X, et al. Science, 2018, 359: 679-684
doi: 10.1126/science.aaq1144
Ao Y X, Zeng K H, Yu B, et al. ACS Nano, 2019, 13:3373- 3386
doi: 10.1021/acsnano.8b09270
Mei Q, Bansal A, Jayakumar M K G, et al. Nat. Commun., 2019, 10:1-11
doi: 10.1038/s41467-018-07882-8
Zhang Y W, Huang L, Li Z J, et al. ACS Nano, 2016, 10: 3881-3885
doi: 10.1021/acsnano.6b02284
Tan P, He L, Han G, et al. Trends Biotechnol., 2017, 35:215 -226
doi: 10.1016/j.tibtech.2016.09.002
Vogt N. Nat. Methods, 2018, 15:242
Wilhelm S. ACS Nano, 2017, 11:10644-10653
doi: 10.1021/acsnano.7b07120
Han S Y, Deng R R, Xie X J, et al. Angew. Chem. Int. Ed., 2014, 53:11702-11715
doi: 10.1002/anie.201403408
Saboktakin M, Ye X, Chettiar U K, et al. ACS Nano, 2013, 7:7186-7192
doi: 10.1021/nn402598e
Wang Y F, Liu G Y, Sun L D, et al. ACS Nano, 2013, 7: 7200-7206
doi: 10.1021/nn402601d
Buzea C, Pacheco I I, Robbie K. Biointerphases, 2007, 2: MR17-MR71
doi: 10.1116/1.2815690
Sun Y, Feng W, Yang P Y, et al. Chem. Soc. Rev., 2015, 44: 1509-1525
doi: 10.1039/C4CS00175C
Gnach A, Lipinski T, Bednarkiewicz A, et al. Chem. Soc. Rev., 2015, 44:1561-1584
doi: 10.1039/C4CS00177J
Vecchio G, Galeone A, Brunetti V, et al. Nanomed. Nanotechnol. Biol. Med., 2012, 8:1-7
doi: 10.1016/j.nano.2011.11.001
Hoet P H, Brüske-Hohlfeld I, Salata O V. J. Nanobiotechnol., 2004, 2:12
doi: 10.1186/1477-3155-2-12
Zarschler K, Rocks L, Licciardello N, et al. Nanomed. Nanotechnol. Biol. Med., 2016, 12:1663-1701
doi: 10.1016/j.nano.2016.02.019
Zhan Q Q, Qian J, Liang H J, et al. ACS Nano, 2011, 5: 3744-3757
doi: 10.1021/nn200110j
McNally K M, Sorg B S, Welch A J, et al. Phys. Med. Biol., 1999, 44:983-1002
doi: 10.1088/0031-9155/44/4/013
Ma G L, Liu J D, Ke Y P, et al. Angew. Chem. Int. Ed., 2018, 57:7019-7022
doi: 10.1002/anie.201713080
Thomas C E, Ehrhardt A, Kay M A. Nat. Rev. Genet., 2003, 4:346-358
doi: 10.1038/nrg1066
Cardin J A, Carlén M, Meletis K, et al. Nat. Protoc., 2010, 5: 247-254
doi: 10.1038/nprot.2009.228
Zhao S, Ting J T, Atallah H E, et al. Nat. Methods, 2011, 8: 745-752
doi: 10.1038/nmeth.1668
Huang J G, Leshuk T, Gu F X. Nano Today, 2011, 6:478- 492
doi: 10.1016/j.nantod.2011.08.002
Bernstein J G, Garrity P A, Boyden E S. Curr. Opin. Neurobiol., 2012, 22:61-71
doi: 10.1016/j.conb.2011.10.023
Klimas A, Entcheva E G. J. Biomed. Opt., 2014, 19:080701
doi: 10.1117/1.JBO.19.8.080701
Papagiakoumou E. Biol. Cell, 2013, 105:443-464
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.