两个含有2,6-二氟苯甲酸配体稀土配合物的合成及晶体结构

彭雄鑫 王文敏 钟宇菲 肖伟 鲍光明 袁厚群

引用本文: 彭雄鑫, 王文敏, 钟宇菲, 肖伟, 鲍光明, 袁厚群. 两个含有2,6-二氟苯甲酸配体稀土配合物的合成及晶体结构[J]. 无机化学学报, 2020, 36(5): 921-926. doi: 10.11862/CJIC.2020.097 shu
Citation:  PENG Xiong-Xin, WANG Wen-Min, ZHONG Yu-Fei, XIAO Wei, BAO Guang-Ming, YUAN Hou-Qun. Synthesis, Crystal Structures of Two Lanthanides Complexes with 2, 6-Difluorobenzoic Acid[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(5): 921-926. doi: 10.11862/CJIC.2020.097 shu

两个含有2,6-二氟苯甲酸配体稀土配合物的合成及晶体结构

    通讯作者: 袁厚群。E-mail:hqyuan2014@126.com
  • 基金项目:

    国家自然科学基金(No.21461011,31560712,31960720),江西省自然科学基金(No.20192ACBL21018,20112BBF60023)和江西省教育厅基金(No.GJJ170245,GJJ170257)资助项目

摘要: 利用2,6-二氟苯甲酸和1,10-菲咯啉作为配体分别与Tm3+、Yb3+离子在常温下反应,制得2个稀土配合物[Tm(dfba)2(phen)(μ2-dfba)]21)和[Yb(dfba)2(phen)(μ2-dfba)]22)(dfba-=2,6-二氟苯甲酸根,phen=1,10-菲咯啉)。用元素分析、红外光谱对2个稀土配合物进行了表征,并用单晶X射线衍射确定了配合物的晶体结构;测定了配合物12的热稳定性。结构分析表明配合物12具有相似的晶体结构。每个Ln3+与2个dfba-配体和1个phen分子配位,形成[Ln(dfba)2(phen)]+结构单元,[Ln(dfba)2(phen)]+单元再通过2个不同的dfba-配体桥联形成双核分子[Ln(dfba)2(phen)(μ2-dfba)]2(Ln=Tm,Yb)。

English

  • The lanthanide complexes have attracted much attention because of their flexible coordination geometry and high coordination numbers as well as multifarious useful properties, such as fluorescence[1-2], catalysis[3-4], magnetism[5-6] and gas sorption[7-8]. It was found that the spatial structures and properties of the lanthanide complexes are mainly dominated by the ligands and the central metal ions in the past decades. For example, suitable ligands could improve the stability of the lanthanides complexes, and enhance fluorescent[9] and/or magnetic[10] properties. Therefore, selection of organic ligands plays a vital role in the designing of lanthanide complexes. Carboxylates and N-donor organic ligands have been widely used. For N-donor ligands, 1, 10-phenanthroline(phen) is very useful because of its strong coordination abilities and π-π stacking interactions[11-12]. For carboxylates, poly-topic aromatic acids are always used to construct the lanthanide complexes due to their versatile coordina-tion modes. On the other hand, benzoic acid or its substituted derivatives which is the “parent” acid, has been explored rather rare in literature. However, some fantastic structures of polynuclear clusters with benzoic acids have been reported[13-14]. Moreover, it was found that the fluorine substituted organic ligands showed more stable to oxidation and enhanced thermal stability[15]. Many lanthanide complexes with fluorine substituted benzoic acid have been investigated, such as 2-fluorobenzoate[16-19], 2, 3, 4, 5-tetrafluorobenzoate[20-21], 2, 3, 5, 6-tetrafluorobenzoate[22], 2, 3, 4, 5, 6-pentafluoroben-zoate[23].It is noted that only few reports about lanthanide complexes with difluorosubstituted benzoic acid, such as 2, 3-difluorobenzoate[24], 2, 4-difluoroben-zoate[25-26], 2, 5-difluorobenzoate[27], have been studied, however, only one complex with 2, 6-difluorobenzoate, [Pr(2, 6-dfba)3(H2O)]n[28], was found in the current version of the Cambridge Structural Database (CSD). Therefore, we are interested in Ln-2, 6-dfba systems to explore new functional lanthanide complexes. In this work, the crystal structures of two new binuclear lanthanide complexes, [Ln(dfba)2(phen)( μ2-dfba)]2 (Ln=Tm, Yb, dfba-=2, 6-difluorobenzoate) are reported, and their infrared spectra and thermogravimetric analysis are discussed.

    2, 6-Difluorobenzoic acid, phen, NaHCO3, Tm(NO3)3 ·6H2O, and Yb(NO3)3·6H2Owere purchased from commercial sources and used directly. Thermogravi-metric analysis (TGA) was recorded on a PerkinElmer TGA4000 at heating rate of 10 ℃·min-1 in N2 atmosphere. Fourier transform infrared spectra (FT-IR) were recorded on a PerkinElmer spectrum-Ⅱ within a wavenumber range of 4 000~400 cm-1.

    A H2O/EtOH solution (12 mL, 1:5, V/V) of 2, 6-difluorobenzoic acid (50 mg, 0.31 mmol) and NaHCO3 (25 mg, 0.28 mmol) were added into Tm(NO3)3·6H2O (50 mg, 0.12 mmol) which was dissolved in 8 mL EtOH. Then 5 mL EtOH dissolving phen (20 mg, 0.10 mmol) was added into the above solution. The resulted solution was kept stirring for 2 hours, and then stood at room temperature. The colorless columnar crystals were obtained after one week. Yield: 35 mg (42.66%). Anal. Calcd. for C66H34F12N4O12Tm2(%): C 48.31, H 2.09, N 3.41; Found(%): C 48.55, H 2.13, N 3.24. FT-IR (KBr, cm-1): 3 067(m), 2 276(w), 1 932(w), 1 670(m), 1 624(m), 1 558(w), 1 522(s), 1 462(s), 1 419(s), 1 350(m), 1 272(m), 1 235(s), 1 142(s), 1 106(s), 1 057(w), 1 008(s), 864(s), 849(s), 807(s), 774(s), 748(w), 728(s), 714(w), 642(s), 595(m), 584(w), 518(m), 492(w), 420(s).

    The complex 2 was synthesized by the similar method for complex 1 except using Yb(NO3)3·6H2O (50 mg, 0.11 mmol) to replace Tm(NO3)3·6H2O. Yield: 40 mg (48.51%). Anal. Calcd. for C66H34F12N4O12Yb2(%): C 48.07, H 2.08, N 3.40; Found(%): C 48.34, H 2.15, N 3.25. FT-IR (KBr, cm-1): 3 066(m), 2 276(w), 1 934(w), 1 670(m), 1 624(m), 1 558(w), 1 522(s), 1 462(s), 1 419(s), 1 350(m), 1 272(m), 1 235(s), 1 141(s), 1 106(s), 1 057(w), 1 008(s), 864(s), 849(s), 807(s), 775(s), 748(w), 728(s), 716(w), 642(s), 595(m), 584(w), 518(m), 492(w), 420(s).

    The crystals with suitable size (0.30 mm×0.10 mm ×0.10 mm for complex 1, 0.18 mm×0.08 mm×0.08 mm for complex 2) were selected and detected on Agilent Gemini CCD-Diffractometer (Xcalibur, Eos, Gemini) with monochromatic Mo radiation (λ=0.071 073 nm) and an EOS detector. The crystallographic data were collected at room temperature. The CrysAlisPro was used for data collection and processing. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, was applied to all data. The structures of complex 1 and 2 were solved by Patterson methods and refined on F 2 by full-matrix least-squares techniques using SHELXTL software[29-30]. All non-hydrogen atoms were refined anisotropically. All H atoms were fixed in calculated positions and refined isotropically. The crystallographic data of 1 and 2 are displayed in Table 1 and selected bond lengths and angles are listed in Table 2.

    表 1

    表 1  Crystallographic data for complexes 1 and 2
    下载: 导出CSV
    Complex 1 2
    Empirical formula C66H34F12N4O12Tm2 C66H34F12N4O12Yb2
    Formula weight 1 640.83 1 649.05
    Temperature/K 296(2) 296(2)
    Crystal system Triclinic Triclinic
    Space group P1 P1
    a/nm 1.189 6(5) 1.186 8(4)
    b/nm 1.216 6(5) 1.215 4(5)
    c/nm 1.226 0(6) 1.224 4(4)
    α/(°) 76.416(4) 76.360(3)
    β/(°) 61.025(5) 61.141(3)
    γ/(°) 89.946(3) 89.870(3)
    V/nm3 1.495 5(9) 1.490 2(9)
    Z 1 1
    Dc/(g • cm-3) 1.822 1.838
    μ/mm-1 3.054 3.226
    F(000) 800 802
    θrange/(°) 2.67-25.99 2.55-27.48
    Reflection collected 15 350 15 077
    Independent reflection (Rint) 6 444 (0.0278) 6 422 (0.0244)
    Parameter 433 433
    GOF on F2 1.063 1.059
    R1, wR2[I>2σ(I) 0.024 5, 0.047 6 0.022 7, 0.048 6
    R1, wR2(all data) 0.028 9, 0.050 5 0.026 8, 0.050 3

    表 2

    表 2  Selected bond lengths (nm) and bond angles (°) for complexes 1 and 2
    下载: 导出CSV
    1
    Tm(1)-O(1) 0.239 4(2) Tm(1)-O(2) 0.236 7(2) Tm(1)-O(3) 0.235 1(2)
    Tm(1)-O(4) 0.240 1(2) Tm(1)-O(5) 0.220 9(9) Tm(1)-O(6)i 0.228 9(2)
    Tm(1)-N(1) 0.244 1(2) Tm(1)-N(2) 0.247 1(2)
    O(5)-Tm(1)-O(6)i 91.28(7) O(5)-Tm(1)-O(3) 77.14(7) O(6)i-Tm(1)-O(3) 89.88(7)
    O(5)-Tm(1)-O(2) 112.96(8) O(6)i-Tm(1)-O(2) 150.71(8) O(3)-Tm(1)-O(2) 80.34(7)
    0(5)-Tm(1)-0(1) 87.79(8) 0(6)i-Tm(1)-0(1) 147.60(7) 0(3)-Tm(1)-0(1) 121.29(7)
    0(2)-Tm(1)-0(1) 54.20(7) 0(5)-Tm(1)-0(4) 130.10(7) 0(6)i-Tm(1)-0(4) 76.06(7)
    0(3)-Tm(1)-0(4) 55.21(7) 0(2)-Tm(1)-0(4) 75.70(7) 0(1)-Tm(1)-0(4) 127.39(7)
    0(5)-Tm(1)-N(1) 148.54(8) 0(6)i-Tm(1)-N(1) 84.19(7) 0(3)-Tm(1)-N(1) 133.77(8)
    0(2)-Tm(1)-N(1) 82.98(8) 0(1)-Tm(1)-N(1) 80.00(8) 0(4)-Tm(1)-N(1) 78.96(7)
    0(5)-Tm(1)-N(2) 81.53(7) 0(6)i-Tm(1)-N(2) 75.44(8) 0(3)-Tm(1)-N(2) 153.79(7)
    0(2)-Tm(1)-N(2) 122.52(8) 0(1)-Tm(1)-N(2) 72.39(7) 0(4)-Tm(1)-N(2) 137.34(7)
    N(1)-Tm(1)-N(2) 67.18(7)
    2
    Yb(1)-0(1) 0.234 7(9) Yb(1)-0(2) 0.239 7(8) Yb(1)-0(3) 0.238 4(9)
    Yb(1)-0(4) 0.236 2(8) Yb(1)-0(5) 0.220 0(7) Yb(1)-0(6)i 0.227 2(7)
    Yb(1)-N(1) 0.243 3(2) Yb(1)-N(2) 0.245 5(2)
    0(5)-Yb(1)-0(6)i 91.26(7) 0(5)-Yb(1)-0(3) 87.26(7) 0(6)i-Yb(1)-0(3) 147.58(7)
    0(5)-Yb(1)-0(2) 130.22(7) 0(6)i-Yb(1)-0(2) 76.07(7) 0(3)-Yb(1)-0(2) 127.75(6)
    0(5)-Yb(1)-0(1) 77.29(7) 0(6)i-Yb(1)-0(1) 89.93(7) 0(3)-Yb(1)-0(1) 121.12(8)
    0(2)-Yb(1)-0(1) 55.20(7) 0(5)-Yb(1)-0(4) 112.83(8) 0(6)i-Yb(1)-0(4) 150.73(7)
    0(3)-Yb(1)-0(4) 54.56(6) 0(2)-Yb(1)-0(4) 75.63(7) 0(1)-Yb(1)-0(4) 80.04(7)
    0(5)-Yb(1)-N(1) 81.19(7) 0(6)i-Yb(1)-N(1) 75.45(7) 0(3)-Yb(1)-N(1) 72.32(7)
    0(2)-Yb(1)-N(1) 137.52(7) 0(1)-Yb(1)-N(1) 153.66(7) 0(4)-Yb(1)-N(1) 122.81(7)
    0(5)-Yb(1)-N(2) 148.64(7) 0(6)i-Yb(1)-N(2) 84.44(7) 0(3)-Yb(1)-N(2) 80.29(8)
    0(2)-Yb(1)-N(2) 78.82(7) 0(1)-Yb(1)-N(2) 133.58(7) 0(4)-Yb(1)-N(2) 82.91(8)
    N(1)-Yb(1)-N(2) 67.64(7)
     Symmetry code:i -x+1, -y+2, -z+1

    CCDC: 1960656, 1; 1960657, 2.

    As shown in the experimental section, the IR spectra of complexes 1 and 2 were almost same. The weak band at 3 067 cm-1 are attributed to the C-H stretching of benzene ring. The strong vibrations at1 624, 1 418 cm-1 in complexes are attributed to the asymmetric and symmetric stretching vibrations of the carboxylate groups, indicating that dfba- exist in the complexes. The strong band at 1 235 cm-1 is assigned to C-F stretching vibration. The stretching vibration of C-N are observed at 1 558 cm-1, showing that phen is included in the complexes. The bending vibrations of C-H of benzene ring were observed in a range of 864~728 cm-1. Moreover, the bands at 518, 420 cm-1 are assigned to the vibrations of Ln-O and Ln-N, respectively, confirming that dfba- and phen are coor-dinated to lanthanide ions.

    Since complexes 1 and 2 are isostructural, herein only the structure of complex 1 is discussed in detail. As show in Fig. 1, the asymmetric unit of complex 1 is composed of one Tm3+ ion, three dfba- anions and one phen molecule. Each Tm3+ ion is eight-coordinated, with six oxygen atoms from three dfba- ligands, and two nitrogen atoms from one phen molecule, forming a distorted two-cap-triprism coordination geometry. O3, O5, O6, O1, N1, O2 atoms are located at the vertex, and N2, O4 atoms are located above the face of the rectangles (Fig. 2). The dfba- ligands have two different coordination modes. The carboxylate groups of O1-C1-O2 and O3-C8-O4 are in a chelating mode, whereas the carboxylate group of O5-C15-O6 adopts bridging mode. The two adjacent Tm3+ ions are bridged by two dfba- ligands with the Tm…Tm distance of 0.509 7 nm to form a dimeric unit. Each phen molecule coordinates to one Tm3+ ion using two N atoms. The distances of Tm-O are in a range of 0.220 9(9)~0.240 1(2) nm, in which the distance of Tm1-O4 is 0.02 nm longer than that of Tm1-O5. The distances of Tm1-N1 and Tm1-N2 are 0.244 1(2) and 0.247 1(2) nm, respectively. The O-Tm-O bond angles range from 54.20(7)° to 150.71(8)°. The phenanthroline molecule is a little distorted, in which the dihedral angle between N1C22C23C24C25C26 ring and C25C26C27 C28C29C30 ring is 1.969(179)°, and it is 1.437(173)° between C25C26C27C28C29C30 ring and N2C27C28 C31C32C33 ring. The carboxylate groups are almost twisted out of the benzene ring planes, in which the dihedral angles between the carboxylate groups and their benzene rings are 46.499(213)°, 53.673(199)°, and 52.961(278)°, respectively.

    图 1

    图 1.  Asymmetric structure unit of complex 1 with 30% probability ellipsoids

    Hydrogen atoms are omitted for clarity; Symmetry code:i-x+1, -y+2, -z+1

    图 2

    图 2.  Perspective view of coordination geometry of Tm3+in complex 1

    Symmetry code:i-x+1, -y+2, -2+1

    As shown in Fig. 3, the thermal decomposition steps of two complexes appeared very similar, and complex 1 showed a little bit more stable than complex 2. There was no obvious weightlessness before 280 ℃ for complex 1 and 270 ℃ for complex 2, indicating that there is no guest molecules included in the complexes, which is consistent with the crystal structure analysis. For complex 1, the first weight loss was 35.11% in a range of 280~340 ℃, corresponding to the loss of two dfba- ligands (Calcd. 38.30%). The second stage occurred in a range of 340~880 ℃, and the weight loss of 38.14% is attributed to the loss of one phen and 0.8 dfba- ligands (Calcd. 39.48%). The remaining component continued to decompose and it did not end at the temperature limit. For complex 2, the first weight loss was 38.18% in a range of 270~325 ℃, corresponding to the loss of two dfba- ligands (Calcd. 38.11%). The second decomposition stage with the weight loss of 33.28% corresponds to the loss of one phen and 0.5 dfba- ligands (Calcd. 33.57%), which occurred in a range of 325~790 ℃. Unlike complex 1, complex 2 reached a platform after 790 ℃.

    图 3

    图 3.  TG curves of complexes 1 and 2

    1. [1]

      Wu Y P, Xu G W, Li D S, et al. Inorg. Chem., 2017, 56(3):1402-1411

    2. [2]

      Zeng C H, Wang J L, Yang Y Y, et al. J. Mater. Chem. C, 2014, 2:2235-2242 doi: 10.1039/C3TC32309A

    3. [3]

      Park K H, Jang K, Son S U, et al. J. Am. Chem. Soc., 2006, 128(27):8740-8741 doi: 10.1021/ja062907o

    4. [4]

      Farrusseng D, Aguado S, Pinel C. Angew Chem. Int. Ed., 2009, 48(41):7502-7513 doi: 10.1002/anie.200806063

    5. [5]

      Ji X Q, Ma F, Xiong J, et al. Inorg. Chem. Front., 2019, 6:786-790 doi: 10.1039/C8QI01331D

    6. [6]

      Su Q Q, Fan K, Jin X X, et al. Inorg. Chem. Front., 2019, 6:1142-1452

    7. [7]

      Lee J Y, Olson D H, Pan L, et al. Adv. Funct. Mater., 2007, 17(8):1255-1262 doi: 10.1002/adfm.200600944

    8. [8]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5):1477-1504 doi: 10.1039/b802426j

    9. [9]

      Khistiaeva V V, Melnikov A S, Slaxoxa O S, et al. Inorg. Chem. Front., 2018, 5:3015-3027 doi: 10.1039/C8QI00712H

    10. [10]

      Raizada M, Sama F, Ashafaq M, et al. Polyhedron, 2018, 139:131-141 doi: 10.1016/j.poly.2017.09.052

    11. [11]

      杨剑, 陶家宇, 幸国香, 等.无机化学学报, 2018, 34(7):1312-1318YANG Jian, TAO Jia-Yu, XING Guo-Xiang, et al. Chinese J. Inorg. Chem., 2018, 34(7):1312-1318 

    12. [12]

      刘利娟, 王燕, 何建波.无机化学学报, 2017, 33(8):1374-1380LIU Li-Juan, WANG Yan, HE Jian-Bo. Chinese J. Inorg. Chem., 2017, 33(8):1374-1380 

    13. [13]

      Leng J D, Liu J L, Tong M L. Chem. Comm., 2012, 48:5286-5288 doi: 10.1039/c2cc30521f

    14. [14]

      Majeed Z, Mondal K C, Kostakis G E, et al. Chem. Comm., 2010, 46:2551-2553 doi: 10.1039/b923998g

    15. [15]

      Kalyakina A S, Utochnikova V V, Bushmarinov I S, et al. Chem. Eur. J., 2017, 23:14944-14953 doi: 10.1002/chem.201703543

    16. [16]

      Li X, Zou Y Q, Song H B, et al. Acta Crystallogr. Sect. C, 2004, C60:m110

    17. [17]

      Li X, Zhang Z Y, Zou Y Q. Eur. J. Inorg. Chem., 2005:2909-2918 doi: 10.1002/ejic.200500001

    18. [18]

      Li X, Zhang Z Y. J. Chem. Cryst., 2005, 35(11):871-874 doi: 10.1007/s10870-005-4557-6

    19. [19]

      Li X, Zhang Z Y, Song H B. J. Mol. Struct., 2005, 751:33-40 doi: 10.1016/j.molstruc.2005.05.005

    20. [20]

      Li J J, Fan T T, Qu X L, et al. Dalton Trans., 2016, 45:2924-2935 doi: 10.1039/C5DT04262C

    21. [21]

      Wu W H, Lin D, Yan Z. Z. Kristallogr.-New Cryst. Struct., 2016, 231(3):823-826

    22. [22]

      Utochnikova V V, Solodukhin N N, Aslandukov A N, et al. Org. Electron., 2017, 44:85-93 doi: 10.1016/j.orgel.2017.01.026

    23. [23]

      Kalyakina A S, Utochnikova V V, Bushmarinov I S, et al. Chem. Eur. J., 2017, 23:4944-14953 doi: 10.1002/chem.201701092

    24. [24]

      Song J, Wu X, Li X. J. Rare Earths, 2009, 27(6):1092-1095 doi: 10.1016/S1002-0721(08)60395-6

    25. [25]

      Wu X S, Zhang Y B, Li X, et al. J. Coord. Chem., 2009, 62(5):797-807 doi: 10.1080/00958970802360988

    26. [26]

      Hao L, Liu X. Acta Crystallogr. Sect. E, 2009, E65:m150 doi: 10.1107/S1600536808035174

    27. [27]

      吴小说, 李夏.无机化学学报, 2008, 24(10):1621-1625WU Xiao-Shuo, LI Xia. Chinese J. Inorg. Chem., 2008, 24(10):1621-1625 doi: 10.3321/j.issn:1001-4861.2008.10.012 

    28. [28]

      Karipides A G, Jai-nhuknan J, Cantrell J S. Acta Crystallogr. Sect. C, 1996, C52:2740-2742 doi: 10.1107/S0108270196008852

    29. [29]

      Sheldrick G M. SHELXL-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    30. [30]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

  • 图 1  Asymmetric structure unit of complex 1 with 30% probability ellipsoids

    Hydrogen atoms are omitted for clarity; Symmetry code:i-x+1, -y+2, -z+1

    图 2  Perspective view of coordination geometry of Tm3+in complex 1

    Symmetry code:i-x+1, -y+2, -2+1

    图 3  TG curves of complexes 1 and 2

    表 1  Crystallographic data for complexes 1 and 2

    Complex 1 2
    Empirical formula C66H34F12N4O12Tm2 C66H34F12N4O12Yb2
    Formula weight 1 640.83 1 649.05
    Temperature/K 296(2) 296(2)
    Crystal system Triclinic Triclinic
    Space group P1 P1
    a/nm 1.189 6(5) 1.186 8(4)
    b/nm 1.216 6(5) 1.215 4(5)
    c/nm 1.226 0(6) 1.224 4(4)
    α/(°) 76.416(4) 76.360(3)
    β/(°) 61.025(5) 61.141(3)
    γ/(°) 89.946(3) 89.870(3)
    V/nm3 1.495 5(9) 1.490 2(9)
    Z 1 1
    Dc/(g • cm-3) 1.822 1.838
    μ/mm-1 3.054 3.226
    F(000) 800 802
    θrange/(°) 2.67-25.99 2.55-27.48
    Reflection collected 15 350 15 077
    Independent reflection (Rint) 6 444 (0.0278) 6 422 (0.0244)
    Parameter 433 433
    GOF on F2 1.063 1.059
    R1, wR2[I>2σ(I) 0.024 5, 0.047 6 0.022 7, 0.048 6
    R1, wR2(all data) 0.028 9, 0.050 5 0.026 8, 0.050 3
    下载: 导出CSV

    表 2  Selected bond lengths (nm) and bond angles (°) for complexes 1 and 2

    1
    Tm(1)-O(1) 0.239 4(2) Tm(1)-O(2) 0.236 7(2) Tm(1)-O(3) 0.235 1(2)
    Tm(1)-O(4) 0.240 1(2) Tm(1)-O(5) 0.220 9(9) Tm(1)-O(6)i 0.228 9(2)
    Tm(1)-N(1) 0.244 1(2) Tm(1)-N(2) 0.247 1(2)
    O(5)-Tm(1)-O(6)i 91.28(7) O(5)-Tm(1)-O(3) 77.14(7) O(6)i-Tm(1)-O(3) 89.88(7)
    O(5)-Tm(1)-O(2) 112.96(8) O(6)i-Tm(1)-O(2) 150.71(8) O(3)-Tm(1)-O(2) 80.34(7)
    0(5)-Tm(1)-0(1) 87.79(8) 0(6)i-Tm(1)-0(1) 147.60(7) 0(3)-Tm(1)-0(1) 121.29(7)
    0(2)-Tm(1)-0(1) 54.20(7) 0(5)-Tm(1)-0(4) 130.10(7) 0(6)i-Tm(1)-0(4) 76.06(7)
    0(3)-Tm(1)-0(4) 55.21(7) 0(2)-Tm(1)-0(4) 75.70(7) 0(1)-Tm(1)-0(4) 127.39(7)
    0(5)-Tm(1)-N(1) 148.54(8) 0(6)i-Tm(1)-N(1) 84.19(7) 0(3)-Tm(1)-N(1) 133.77(8)
    0(2)-Tm(1)-N(1) 82.98(8) 0(1)-Tm(1)-N(1) 80.00(8) 0(4)-Tm(1)-N(1) 78.96(7)
    0(5)-Tm(1)-N(2) 81.53(7) 0(6)i-Tm(1)-N(2) 75.44(8) 0(3)-Tm(1)-N(2) 153.79(7)
    0(2)-Tm(1)-N(2) 122.52(8) 0(1)-Tm(1)-N(2) 72.39(7) 0(4)-Tm(1)-N(2) 137.34(7)
    N(1)-Tm(1)-N(2) 67.18(7)
    2
    Yb(1)-0(1) 0.234 7(9) Yb(1)-0(2) 0.239 7(8) Yb(1)-0(3) 0.238 4(9)
    Yb(1)-0(4) 0.236 2(8) Yb(1)-0(5) 0.220 0(7) Yb(1)-0(6)i 0.227 2(7)
    Yb(1)-N(1) 0.243 3(2) Yb(1)-N(2) 0.245 5(2)
    0(5)-Yb(1)-0(6)i 91.26(7) 0(5)-Yb(1)-0(3) 87.26(7) 0(6)i-Yb(1)-0(3) 147.58(7)
    0(5)-Yb(1)-0(2) 130.22(7) 0(6)i-Yb(1)-0(2) 76.07(7) 0(3)-Yb(1)-0(2) 127.75(6)
    0(5)-Yb(1)-0(1) 77.29(7) 0(6)i-Yb(1)-0(1) 89.93(7) 0(3)-Yb(1)-0(1) 121.12(8)
    0(2)-Yb(1)-0(1) 55.20(7) 0(5)-Yb(1)-0(4) 112.83(8) 0(6)i-Yb(1)-0(4) 150.73(7)
    0(3)-Yb(1)-0(4) 54.56(6) 0(2)-Yb(1)-0(4) 75.63(7) 0(1)-Yb(1)-0(4) 80.04(7)
    0(5)-Yb(1)-N(1) 81.19(7) 0(6)i-Yb(1)-N(1) 75.45(7) 0(3)-Yb(1)-N(1) 72.32(7)
    0(2)-Yb(1)-N(1) 137.52(7) 0(1)-Yb(1)-N(1) 153.66(7) 0(4)-Yb(1)-N(1) 122.81(7)
    0(5)-Yb(1)-N(2) 148.64(7) 0(6)i-Yb(1)-N(2) 84.44(7) 0(3)-Yb(1)-N(2) 80.29(8)
    0(2)-Yb(1)-N(2) 78.82(7) 0(1)-Yb(1)-N(2) 133.58(7) 0(4)-Yb(1)-N(2) 82.91(8)
    N(1)-Yb(1)-N(2) 67.64(7)
     Symmetry code:i -x+1, -y+2, -z+1
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  20
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2020-05-10
  • 收稿日期:  2019-10-24
  • 修回日期:  2019-12-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章