Preparation of Porous Silicon Nanomaterials and Applications in High Energy Lithium Ion Batteries
- Corresponding author: JIANG Rui-Yu, zhongjin@nju.edu.cn JIN Zhong, zhongjin@nju.edu.cn
Citation:
SUN Lin, XIE Jie, LIU Tao, HUANG Song-Chao, ZHANG Lei, CHEN Zhi-Dong, JIANG Rui-Yu, JIN Zhong. Preparation of Porous Silicon Nanomaterials and Applications in High Energy Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry,
;2020, 36(3): 393-405.
doi:
10.11862/CJIC.2020.062
Gonzalez-Zalba M F, Shevchenko S N, Barraud S, et al. Nano Lett., 2016, 16:1614-1619
doi: 10.1021/acs.nanolett.5b04356
Luo Z C, Zhang X Z, Xiong C Y, et al. Adv. Function. Mater., 2015, 25:158-166
doi: 10.1002/adfm.201402955
Yoshikawa K, Kawasaki H, Yoshida W, et al. Nat. Energy, 2017, 2:17032
doi: 10.1038/nenergy.2017.32
Xu W J, Tamarov K, Fan L, et al. ACS Appl. Mater. Interfaces, 2018, 10:23529-23538
doi: 10.1021/acsami.8b04557
Kang J Y, Kim D, Wang J X, et al. Adv. Mater., 2018, 30:1800512
doi: 10.1002/adma.201800512
Ogata K, Jeon S, Ko D S, et al. Nat. Commun., 2018, 9:479
doi: 10.1038/s41467-018-02824-w
Guo S C, Hu X, Hou Y, et al. ACS Appl. Mater. Interfaces, 2017, 9:42084-42092
doi: 10.1021/acsami.7b13035
Jeong M G, Islam M, Du H L, et al. Electrochim. Acta, 2016, 209:299-307
doi: 10.1016/j.electacta.2016.05.080
Martín-Sánchez D, Ponce-Alcántara S, Martínez-Pérez P, et al. J. Electrochem. Soc., 2019, 166:B9-B12
doi: 10.1149/2.0051902jes
Gelloz B, Fuwa H, Kondoh E, et al. ECS J. Solid State Sci. Technol., 2018, 7:730-735
doi: 10.1149/2.0121812jss
Zhou X Y, Chen S, Zhou H C, et al. Microporous Mesoporous Mater., 2018, 268:9-15
doi: 10.1016/j.micromeso.2018.03.035
Wang F G, Cao Z Y, Liang A M, et al. Mater. Lett., 2018, 218:249-252
doi: 10.1016/j.matlet.2018.01.161
Mu T S, Shen B C, Lou S F, et al. Chem. Eng. J., 2019, 375:121923
doi: 10.1016/j.cej.2019.121923
Kwon S, Kim K H, Kim W S, et al. Nanotechnology, 2019, 30:405401
doi: 10.1088/1361-6528/ab2dd2
Wei Q, Liu G C, Zhang C, et al. Electrochim. Acta, 2019, 317:583-593
doi: 10.1016/j.electacta.2019.06.024
Duan Y J, Zhao D L, Meng W J, et al. J. Alloys Compd., 2019, 800:198-207
doi: 10.1016/j.jallcom.2019.06.009
Han P, Sun W C, Li D Z, et al. Appl. Surf. Sci., 2019, 481:933-939
doi: 10.1016/j.apsusc.2019.03.051
Dai F, Zai J T, Yi R, et al. Nat. Commun., 2014, 5:3605
doi: 10.1038/ncomms4605
Uhlir J A. Bell Syst. Tech. J., 1956, 35:333-347
doi: 10.1002/j.1538-7305.1956.tb02385.x
Cullis A G, Canham L T. Nature, 1991, 353:335-338
doi: 10.1038/353335a0
Takaloo A, Kolahdouz M, Poursafar J, et al. Mater. Res. Express, 2018, 5:035905
doi: 10.1088/2053-1591/aab2ee
Hasan P M Z, Sajith V K, Shahnawaze Ansari M, et al. Microporous Mesoporous Mater., 2017, 249:176-190
doi: 10.1016/j.micromeso.2017.04.059
Lin J C, Hou H T, Wang H K, et al. Opt. Mater. Express, 2017, 7:880-887
doi: 10.1364/OME.7.000880
Li X L, Gu M, Hu S Y, et al. Nat. Commun., 2014, 5:4105
doi: 10.1038/ncomms5105
Bang B M, Lee J I, Kim H, et al. Adv. Energy Mater., 2012, 2:878-883
doi: 10.1002/aenm.201100765
Zhu B, Liu W J, Ding S J, et al. J. Phys. Chem. C, 2018, 122:21537-21542
doi: 10.1021/acs.jpcc.8b07785
Sohn M, Lee D G, Park H I, et al. Adv. Function. Mater., 2018, 28:1800855
doi: 10.1002/adfm.201800855
Mu T S, Zuo P J, Lou S F, et al. J. Alloys Compd., 2019, 777:190-197
doi: 10.1016/j.jallcom.2018.10.177
Cui M, Wang L, Guo X W, et al. J. Mater. Chem. A, 2019, 7:3874-3881
doi: 10.1039/C8TA11684A
Zuo X X, Wang X Y, Xia Y G, et al. J. Power Sources, 2019, 412:93-104
doi: 10.1016/j.jpowsour.2018.11.039
Shivaraju G C, Sudakar C, Prakash A S. Electrochim. Acta, 2019, 294:357-364
doi: 10.1016/j.electacta.2018.10.122
Liu Y X, Qin L J, Liu F, et al. J. Power Sources, 2018, 406:167-175
doi: 10.1016/j.jpowsour.2018.10.028
Huang L Q, Chen J, Yang X B, et al. Mater. Lett., 2018, 228:187-190
doi: 10.1016/j.matlet.2018.06.013
Liu M P, Li C H, Du H B, et al. Chem. Commun., 2012, 48:4950-4952
doi: 10.1039/c2cc17083c
Bao Z H, Weatherspoon M R, Shian S, et al. Nature, 2007, 446:172-175
doi: 10.1038/nature05570
Lu Z D, Liu N, Lee H W, et al. ACS Nano, 2015, 9:2540-2547
doi: 10.1021/nn505410q
Sun L, Wang F, Su T T, et al. Dalton Trans., 2017, 46:11542-11546
doi: 10.1039/C7DT02132A
Du F H, Ni Y, Wang Y, et al. ACS Nano, 2017, 11:8628-8635
doi: 10.1021/acsnano.7b03830
Kim N, Park H, Yoon N, et al. ACS Nano, 2018, 12:3853-3864
doi: 10.1021/acsnano.8b01129
Zuo X X, Xia Y G, Ji Q, et al. ACS Nano, 2017, 11:889-899
doi: 10.1021/acsnano.6b07450
Lin N, Han Y, Zhou J, et al. Energy Environ. Sci., 2015, 8:3187-3191
doi: 10.1039/C5EE02487K
Kim N, Park H, Yoon N, et al. ACS Nano, 2018, 12:3853-3864
doi: 10.1021/acsnano.8b01129
Sun D, Riley A E, Cadby A J, et al. Nature, 2006, 441:1126-1130
doi: 10.1038/nature04891
Lin L D, Xu X N, Chu C X, et al. Angew. Chem. Int. Ed., 2016, 55:14063-14066
doi: 10.1002/anie.201608146
Ma H, Cheng F, Chen J Y, et al. Adv. Mater., 2007, 19:4067-4070
doi: 10.1002/adma.200700621
Liang J W, Wei D H, Lin N, et al. Chem. Commun., 2014, 50:6856-6859
doi: 10.1039/c4cc00888j
Sun L, Wang F, Su T T, et al. ACS Appl. Mater. Interfaces, 2017, 9:40386-40393
doi: 10.1021/acsami.7b14312
Wang F, Sun L, Zi W W, et al. Chem. Eur. J., 2019, 25:9071-9077
doi: 10.1002/chem.201901238
Wang Q T, Han L J, Zhang X, et al. Mater. Lett., 2016, 185:558-560
doi: 10.1016/j.matlet.2016.09.059
Wu H, Du N, Shi X X, et al. J. Power Sources, 2016, 331:76-81
doi: 10.1016/j.jpowsour.2016.09.046
An W, Gao B, Mei S X, et al. Nat. Commun., 2019, 10:1447
doi: 10.1038/s41467-019-09510-5
Zhang Z L, Wang Y H, Ren W F, et al. Angew. Chem. Int. Ed., 2014, 126:5265-5269
doi: 10.1002/ange.201310412
Wang B, Li X Y, Zhang X F, et al. Adv. Mater., 2013, 25:3560-3565
doi: 10.1002/adma.201300844
Park Y, Choi N S, Park S, et al. Adv. Energy Mater., 2013, 3:206-212
doi: 10.1002/aenm.201200389
Zhang R Y, Du Y J, Li D, et al. Adv. Mater., 2014, 26:6749-6755
doi: 10.1002/adma.201402813
Zhou X M, Liu Y, Du C Y, et al. J. Power Sources, 2018, 381:156-163
doi: 10.1016/j.jpowsour.2018.02.009
Du F H, Li B, Fu W, et al. Adv. Mater., 2014, 26:6145-6150
doi: 10.1002/adma.201401937
Sun Y M, Lopez J, Lee H W, et al. Adv. Mater., 2016, 28:2455-2461
doi: 10.1002/adma.201504723
Zhang C C, Cai X, Chen W Y, et al. ACS Sustainable Chem. Eng., 2018, 6:9930-9939
doi: 10.1021/acssuschemeng.8b01189
Jia H P, Zheng J M, Song J H, et al. Nano Energy, 2018, 50:589-597
doi: 10.1016/j.nanoen.2018.05.048
Xu T, Wang D, Qiu P, et al. Nanoscale, 2018, 10:16638-16644
doi: 10.1039/C8NR04587A
Tang X F, Wen G W, Song Y. J. Alloys Compd., 2018, 739:510-517
doi: 10.1016/j.jallcom.2017.12.331
Li B, Li S X, Jin Y, et al. J. Mater. Chem. A, 2018, 6:21098-21103
doi: 10.1039/C8TA07576J
Fan X Y, Yin B P, Wu T H, et al. Energy Technol., 2019, 7:1800787
doi: 10.1002/ente.201800787
Chen S, Chen Z, Xu X Y, et al. Small, 2018, 14:1703361
doi: 10.1002/smll.201703361
Su J M, Zhao J Y, Li L Y, et al. ACS Appl. Mater. Interfaces, 2017, 9:17807-17813
doi: 10.1021/acsami.6b16644
Chen M, Li B, Liu X J, et al. J. Mater. Chem. A, 2018, 6:3022-3027
doi: 10.1039/C7TA10153H
Dou X Y, Chen M, Zai J T, et al. Sustainable Energy Fuels, 2019, 3:2361-2365
doi: 10.1039/C9SE00281B
Zhang Y G, Du N, Chen Y F, et al. Nanoscale, 2018, 10:5626-5633
doi: 10.1039/C7NR09599F
Zhang Y G, Du N, Jiang J W, et al. J. Alloys Compd., 2019, 792:341-347
doi: 10.1016/j.jallcom.2019.04.082
Guan P, Li J J, Lu T G, et al. ACS Appl. Mater. Interfaces, 2018, 10:34283-34290
doi: 10.1021/acsami.8b12071
Mishra K, Zheng J M, Patel R, et al. Electrochim. Acta, 2018, 269:509-516
doi: 10.1016/j.electacta.2018.02.166
Vrankovic D, Graczyk-Zajac M, Kalcher C, et al. ACS Nano, 2017, 11:11409-11416
doi: 10.1021/acsnano.7b06031
Dai F, Yi R, Yang H, et al. ACS Appl. Mater. Interfaces, 2019, 11:13257-13263
doi: 10.1021/acsami.9b01501
Han X, Chen H X, Li X, et al. J. Mater. Chem. A, 2016, 4:434-442
doi: 10.1039/C5TA08297H
Ge M Y, Rong J P, Fang X, et al. Nano Res., 2013, 6:174-181
doi: 10.1007/s12274-013-0293-y
Wang J Y, Liao L, Lee H R, et al. Nano Energy, 2019, 61:404-410
doi: 10.1016/j.nanoen.2019.04.070
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Inserts in (b) and (f) show the presence of the SiO2 layer of HSiO2@mTiO2 and the core-shell morphology of Si@mTiO2, respectively