Syntheses, Crystal Structures, Luminescent and Magnetic Properties of 2D Manganese(Ⅱ) and Zinc(Ⅱ) Coordination Polymers Based on an Ether-Bridged Tetracarboxylic Acid

Yu LI Zhen-Yu ZHAO Xun-Zhong ZOU An-Sheng FENG Jin-Zhong GU

Citation:  LI Yu, ZHAO Zhen-Yu, ZOU Xun-Zhong, FENG An-Sheng, GU Jin-Zhong. Syntheses, Crystal Structures, Luminescent and Magnetic Properties of 2D Manganese(Ⅱ) and Zinc(Ⅱ) Coordination Polymers Based on an Ether-Bridged Tetracarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 377-384. doi: 10.11862/CJIC.2020.042 shu

由醚氧桥连四羧酸配体构筑的锰(Ⅱ)和锌(Ⅱ)配位聚合物的合成、晶体结构、荧光及磁性质

    通讯作者: 赵振宇, gujzh@lzu.edu.cn
    顾金忠, yxpzzy01@163.com
  • 基金项目:

    广东省高校创新团队项目 2017GKCXTD001

    深圳市科技计划项目 JCYJ20170817112445033

    广东省大学生科技创新培育专项 pdjh2019b0690

    生物无机与合成化学教育部重点实验室开放基金 2016

    广东省高等职业院校珠江学者岗位计划资助项目 2015

    深圳市科技计划项目 GGFW2017041209483817

    广东省高等职业院校珠江学者岗位计划资助项目 2018

    广东轻院科技成果培育项目 KJPY2018-010

    广东省高等职业院校珠江学者岗位计划资助项目(2015, 2018), 广东轻院珠江学者人才类项目(No.RC2015-001), 生物无机与合成化学教育部重点实验室开放基金(2016), 广东省高校创新团队项目(No.2017GKCXTD001), 广州市科技计划项目(No.201904010381), 深圳市科技计划项目(No.JCYJ20170817112445033, GGFW2017041209483817), 广东省大学生科技创新培育专项(No.pdjh2019b0690), 广东轻院科技成果培育项目(No.KJPY2018-010)和广东轻院优秀青年基金项目(No.QN2018-007)资助

    广东轻院优秀青年基金项目 QN2018-007

    广东轻院珠江学者人才类项目 RC2015-001

    广州市科技计划项目 201904010381

摘要: 采用水热方法,用醚氧桥连四羧酸配体(H4L)和菲咯啉(phen)、吡啶(py)分别与MnCl2·4H2O和ZnCl2反应,合成了2个二维配位聚合物{[Mn2μ6-L)(phen)2]·5H2O}n1)和{[Zn2μ7-L)(py)]·H2O}n2),并对其结构、荧光和磁性质进行了研究。结构分析结果表明2个配合物分别属于三斜和单斜晶系,P1I2/a空间群。配合物12分别具有基于四核锰和双核锌的二维层结构。荧光和磁性研究结果表明,配合物2在室温下能发出蓝色荧光,聚合物1中相邻Mn(Ⅱ)离子间存在反铁磁相互作用。

English

  • The design and synthesis of coordination polymers have become the subjects of extensive investigation owing to the intriguing structures and functional properties, such as gas separation, catalysis, sensing, luminescence and magnetism[1-8]. The applications of such functional coordination polymers largely depend on the metal ions, organic ligands, solvent systems, temperatures, and pH values[9-14].

    In this context, semi-rigid polycarboxylate ligands have been extensively utilized to synthesize various functional coordination polymers owing to their strong coordination ability in diverse modes and the fact that they are able to satisfy the geometric requirement of the metal centers, which leads to higher dimensional frameworks[10, 12, 15-19].

    In this context, we selected 3, 3′, 4, 5′-diphenyl ether tetracarboxylic acid (H4L) as an organic linker owing to the following features: (1) it can twist and rotate freely to generate different angles between the two phenyl planes via the C-Oether-C bond to furnish a subtle conformational adaptation; (2) it has nine potential coordination sites (eight carboxylate O donors and one Oether donor), which can lead to diverse coordination patterns and high dimensionalities, especially when acting as a multiply bridging block; (3) this acid block remains poorly used for the generation of coordination polymers. Given these features, the main objective of the present study consisted in the exploration of H4L as a novel ether-bridged tetracarboxylate block for the assembly of diverse coordination polymers.

    In this work, we report the syntheses, crystal structures, luminescent and magnetic properties of two Mn(Ⅱ) and Zn(Ⅱ) coordination polymers constructed from the ether-bridged tetracarboxylate ligand.

    All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1. Excitation and emission spectra were recorded on an Edinburgh FLS920 fluorescence spectrometer using the solid samples at room temperature. Magnetic susceptibility data were collected in the 2~300 K temperature range on a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.

    A mixture of MnCl2·4H2O (0.040 g, 0.20 mmol), H4L (0.035 g, 0.10 mmol), phen (0.040 g, 0.20 mmol), NaOH (0.016 g, 0.40 mmol) and H2O (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Yellow block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 54% (based on H4L). Anal. Calcd. for C40H32Mn2N4O14(%): C 53.23, H 3.57, N 6.21; Found(%): C 53.36, H 3.58, N 6.17. IR (KBr, cm-1): 3 389w, 3 066w, 1 610m, 1 565s, 1 515m, 1 448w, 1 427m, 1 381s, 1 258w, 1 220w, 1 142w, 1 103 w, 1 063w, 980w, 847m, 778w, 724m, 634w, 545w.

    A mixture of ZnCl2 (0.027 g, 0.20 mmol), H4L (0.035 g, 0.10 mmol), py (0.50 mL, 6.30 mmol), and H2O (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Colorless block-shaped crystals of 2 were isolated manually, and washed with distilled water. Yield: 50% (based on H4L). Anal. Calcd. for C21H13Zn2 NO10(%): C 44.24, H 2.30, N 2.46; Found(%): C 44.03, H 2.29, N 2.47. IR (KBr, cm-1): 3 562w, 3 495w, 3 076w, 1 630s, 1 571s, 1 448m, 1 386s, 1 298w, 1 265m, 1 220 w, 1 147w, 1 103w, 1 069w, 1 047w, 985w, 935w, 901w, 851w, 834w, 795w, 767w, 718w, 662w, 644w, 584w, 534w.

    The complexes are insoluble in water and common organic solvents, such as methanol, ethanol, acetone and DMF.

    Two single crystals with dimensions of 0.25 mm×0.20 mm×0.19 mm (1) and 0.26 mm×0.24 mm×0.23 mm (2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo radiation (λ=0.071 073 nm). The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[20]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. Disordered solvent molecules in 1 were removed using the SQUEEZE routine in PLATON[21]. The number of solvent water molecules was obtained on the basis of elemental and thermogravimetric analyses. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2. Hydrogen bond parameters of complex 2 are given in Table 3.

    Table 1

    Table 1.  Crystal data for complexes 1 and 2
    下载: 导出CSV
    Complex1 2
    Chemical formula C40H32Mn2N4O14 C21H13Zn2NO10
    Molecular weight 902.49 570.06
    Crystal system Triclinic Monoclinic
    Space group P1 I2/a
    a / nm 1.087 55(9) 1.785 54(8)
    b / nm 1.182 56(11) 1.319 04(4)
    c / nm 1.420 46(11) 1.801 75(6)
    α / (°) 75.404(7)
    β / (°) 88.089(7) 92.856(3)
    γ / (°) 75.299(8)
    V / nm3 1.709 1(3) 4.238 2(3)
    Z 2 8
    F(000) 824 2 288
    θ range for data collection 3.428~25.048 3.464~25.048
    Limiting indices -12 ≤ h≤ 9,
    -14 ≤ k ≤ 13,
    -15 ≤ l ≤ 16
    -20 ≤ h ≤ 21,
    -15 ≤ k ≤ 11,
    -21 ≤ l ≤ 20
    Reflection collected, unique (Rint) 10 937, 6 032 (0.061 7) 13 704, 3 752 (0.040 9)
    Dc / (g·cm-3) 1.579 1.787
    μ / mm-1 0.806 2.324
    Data, restraint, parameter 6 032, 0, 496 3 752, 0, 307
    Goodness-of-fit on F2 0.961 1.048
    Final R indices [I≥2σ(I)] R1, wR2 0.072 1, 0.157 2 0.042 1, 0.103 7
    R indices (all data) R1, wR2 0.121 0, 0.183 6 0.056 1, 0.115 7
    Largest diff. peak and hole / (e·nm-3) 958 and -719 1 260 and -552

    Table 2

    Table 2.  Selected bond distances (nm) and bond angles (°) for complexes 1 and 2
    下载: 导出CSV
    1
    Mn(1)-O(1) 0.214 7(4) Mn(1)-O(6)A 0.205 8(4) Mn(1)-O(8)B 0.203 4(4)
    Mn(1)-N(1) 0.222 3(4) Mn(1)-N(2) 0.228 5(5) Mn(2)-O(2) 0.216 3(4)
    Mn(2)-O(3) 0.217 5(3) Mn(2)-O(3)C 0.217 7(4) Mn(2)-O(9)B 0.214 3(4)
    Mn(2)-N(3) 0.229 6(4) Mn(2)-N(4) 0.229 8(4)
    O(8)B-Mn(1)-O(6)A 110.17(16) O(8)B-Mn(1)-O(1) 97.57(15) O(6)A-Mn(1)-O(1) 92.25(15)
    O(8)B-Mn(1)-N(1) 122.13(17) O(6)A-Mn(1)-N(1) 125.62(18) O(1)-Mn(1)-N(1) 94.61(17)
    O(8)B-Mn(1)-N(2) 90.32(17) O(6)A-Mn(1)-N(2) 93.85(19) O(1)-Mn(1)-N(2) 167.73(17)
    N(1)-Mn(1)-N(2) 73.19(19) O(9)B-Mn(2)-O(2) 97.62(14) O(9)B-Mn(2)-O(3) 94.98(14)
    O(2)-Mn(2)-O(3) 80.29(14) O(9)B-Mn(2)-O(3)C 102.45(15) O(2)-Mn(2)-O(3)C 151.09(14)
    O(3)-Mn(2)-O(3)C 77.46(14) O(9)B-Mn(2)-N(3) 166.85(15) O(2)-Mn(2)-N(3) 80.40(15)
    O(3)-Mn(2)-N(3) 97.48(14) O(3)C-Mn(2)-N(3) 84.43(15) O(9)B-Mn(2)-N(4) 96.56(15)
    O(2)-Mn(2)-N(4) 107.21(15) O(3)-Mn(2)-N(4) 165.22(15) O(3)C-Mn(2)-N(4) 91.03(15)
    N(3)-Mn(2)-N(4) 71.89(16)
    2
    Zn(1)-O(1) 0.196 3(3) Zn(1)-O(7)A 0.192 3(3) Zn(1)-O(8)B 0.192 2(3)
    Zn(1)-N(1) 0.199 8(4) Zn(2)-O(2) 0.195 7(3) Zn(2)-O(6)A 0.195 0(3)
    Zn(2)-O(4)C 0.191 3(4) Zn(2)-O(9)B 0.196 6(3)
    O(7)A-Zn(1)-O(8)B 127.52(15) O(1)-Zn(1)-O(7)A 106.51(15) O(1)-Zn(1)-O(8)B 106.01(15)
    N(1)-Zn(1)-O(7)A 105.44(14) N(1)-Zn(1)-O(8)B 108.10(14) O(1)-Zn(1)-N(1) 99.97(15)
    O(4)C-Zn(2)-O(6)A 95.08(16) O(4)C-Zn(2)-O(2) 117.39(17) O(6)A-Zn(2)-O(2) 112.26(15)
    O(4)C-Zn(2)-O(9)B 118.17(18) O(6)A-Zn(2)-O(9)B 111.88(14) O(9)B-Zn(2)-O(2) 102.42(15)
    Symmetry transformations used to generate equivalent atoms: A: -x, -y, -z+1; B: x+1, y, z; C: -x, -y+1, -z+1 for 1; A: -x+1, -y+1, -z+1; B: -x+1, y+1/2, -z+3/2; C: -x+1, -y+2, -z+1 for 2.

    Table 3

    Table 3.  Hydrogen bond lengths (nm) and angles (°) of complex 2
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(10)-H(1W)…O(3) 0.085 0 0.193 7 0.278 7 178.54
    O(10)-H(2W)…O(4)A 0.098 3 0.202 9 0.300 1169.50
    Symmetry code: A: -x+1, -y+2, -z+1.

    CCDC: 1943370, 1; 1943371, 2.

    2.1.1   Crystal of {[Mn2(μ6-L)(phen)2]·5H2O}n (1)

    An asymmetric unit of complex 1 possesses two Mn(Ⅱ) ions (Mn1 and Mn2), one μ6-L4- block, two phen moieties and five lattice water molecules (Fig. 1). Mn1 center is five-coordinated and reveals a trigonal pyramidal {MnN2O3} environment, which is completed by three carboxylate O atoms from three μ6-L4- blocks and a pair of N donors from the phen moiety. The six-coordinated Mn2 ion displays a distorted octahedral {MnN2O4} geometry filled by four carboxylate O atoms from three μ6-L4- blocks and a pair of N donors from the phen moiety. The lengths of the Mn-O and Mn-N bonds are 0.203 4(4)~0.217 7(4) and 0.222 3(4)~0.229 8(4) nm, respectively, which are within the normal values for related Mn(Ⅱ) derivatives[10, 12, 16, 19]. The L4- ligand behaves as a μ6-block (mode Ⅰ, Scheme 1), wherein four deprotonated carboxylate groups adopt monodentate or μ-bridging bidentate modes. In the μ6-L4- block, a dihedral angle (between two benzene rings) and a C-Oether-C angle are 66.27° and 118.88°, respe-ctively. Four carboxylate groups and two carboxylate O atoms of four different μ6-L4- blocks interlink four adjacent Mn(Ⅱ) centers to give a tetranuclear Mn4 unit (Fig. 2). These Mn4 units are multiply held together by the remaining COO- groups to generate a 2D sheet (Fig. 3).

    Figure 1

    Figure 1.  Drawing of asymmetric unit of complex 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules are omitted for clarity; Symmetry codes: A:-x, -y, -z+1; B: x+1, y, z; C: -x, -y+1, -z+1

    Scheme 1

    Scheme 1.  Coordination modes of L4- ligands in complexes 1 and 2

    Figure 2

    Figure 2.  Tetra-manganese(Ⅱ) subunit in 1

    Figure 3

    Figure 3.  Two dimensional sheet in complex 1 viewed along c axis
    2.1.2   Crystal of {[Zn2(μ7-L)(py)]·H2O}n (2)

    This complex reveals a 2D metal-organic network. An asymmetric unit has two Zn(Ⅱ) ions (Zn1 and Zn2), one μ7-L4- block, one py ligand and one H2O molecule of crystallization. The Zn1 center is tetra-coordinated and reveals a distorted tetrahedral {ZnNO3} geometry. It is completed by three carboxylate O donors from three individual μ7-L4- moieties and one pyridyl N donor. The Zn2 ion is also tetra-coordinated and has a distorted tetrahedral {ZnO4} environment comprising four carboxylate O atoms of three different μ7-L4- moieties. The Zn-O (0.191 4(4)~0.196 5(3) nm) and Zn-N (0.199 8(4) nm) bonds are within standard values[12, 22-23]. The L4- block acts as a μ7-linker with its carboxylate groups adopting a monodentate or μ-bridging bidentate mode (mode Ⅱ, Scheme 1). Within the μ7-L4- block, the dihedral angle between two aromatic rings is 62.07°, whereas the C-Oether-C angle is 118.98°. Two adjacent Zn centers are held together by means of three carboxylate groups coming from three μ7-L4- spacers (Fig. 4). As a result, the dizinc(Ⅱ) subunits with a Zn…Zn separation of 0.332 6(3) nm are formed and further interlinked by μ7-L4- blocks to produce a 2D network (Fig. 6).

    Figure 4

    Figure 4.  Drawing of asymmetric unit of complex 2 with 30% probability thermal ellipsoids

    Figure 5

    Figure 5.  Di-zinc(Ⅱ) subunit in 2

    Figure 6

    Figure 6.  Two dimensional sheet of 2 viewed along a axis

    To determine the thermal stability of complexes 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 7, TGA curve of complex 1 shows that there was a loss of five lattice water molecules between 35 and 120 ℃ (Obsd. 9.8%, Calcd. 9.9%); further heating above 220 ℃ leads to a decomposition of the dehydrated sample. Complex 2 lost its one lattice water molecule in a range of 44~142 ℃ (Obsd. 3.1%, Calcd. 3.2%), followed by the decomposition at 392 ℃.

    Figure 7

    Figure 7.  TGA curves of complexes 1~2

    Solid-state emission spectra of H4L and zinc(Ⅱ) complex 2 were measured at room temperature (Fig. 8). The spectrum of H4L revealed a weak emission with a maximum at 467 nm (λex=300 nm). In comparison with H4L, complex 2 exhibited more extensive emission with a maximum at 446 nm (λex=300 nm). These emissions correspond to intraligand π-π* or n-π* transition of H4L[10, 12, 18]. Enhancement of the lumines-cence in 2 vs H4L can be explained by the coordina-tion of ligands to Zn(Ⅱ), because the coordination can augment a rigidity of ligands and reduce an energy loss due to radiationless decay[12, 18, 22].

    Figure 8

    Figure 8.  Solid-state emission spectra of H4L and complex 2 at room temperature

    Variable-temperature magnetic susceptibility measurements were performed on powder samples of 1 in the 2~300 K temperature range (Fig. 9). For the 2D Mn(Ⅱ) polymer 1 at room temperature, the value of χMT, 8.80 cm3·mol-1·K, was close to the value (8.76 cm3·mol-1·K) expected for two magnetically isolated high-spin Mn(Ⅱ) ion (S=5/2, g=2.0). If temperature was lowered, the χMT value decreased continuously to a minimum of 1.51 cm3·mol-1·K at 2.0 K. Between 10 and 300 K, the magnetic susceptibility can be fitted to the Curie-Weiss law with C=9.50 cm3·mol-1·K and θ=-23.22 K. Because of the long separation between the neighboring Mn4 units, only the coupling interactions within the tetra-manganese(Ⅱ) blocks were considered. A decrease in χMT and a negative θ are due to an overall antiferromagnetic coupling between the manganese centers in the Mn4 subunits. According to the structure of complex 1 (Fig. 2), three are two sets of magnetic exchange pathway within the Mn4 subunit via two carboxylate O atoms and four carbo-xylate groups bridges, which could be responsible for the observed antiferromagnetic exchange.

    Figure 9

    Figure 9.  Temperature dependence of χMT (○) and 1/χM(□) for complex 1

    In summary, we have successfully synthesized and characterized two new manganese and zinc coordination polymers by using one unexplored ether-bridged tetracarboxylic acid as ligand under hydrothermal condition. Both complexes feature a 2D sheet structure based on Mn4 or Zn2 subunits. Besides, the luminescent (for 2) and magnetic (for 1) properties were also investigated and discussed. The results show that such ether-bridged tetracarboxylic acid can be used as a versatile multifunctional building block toward the generation of new coordination polymers.


    1. [1]

      Zhu J, Usov P M, Xu W Q, et al. J. Am. Chem. Soc., 2018, 140:993-1003 doi: 10.1021/jacs.7b10643

    2. [2]

      Fu H R, Zhao Y, Zou Z, et al. Dalton Trans., 2018, 47:3725-3732 doi: 10.1039/C8DT00206A

    3. [3]

      Zou L F, Yuan J Q, Yuan Y, et al. CrystEngComm, 2019, 21:3289-3294 doi: 10.1039/C9CE00343F

    4. [4]

      Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:2403-2412 doi: 10.1021/acs.inorgchem.8b02926

    5. [5]

      Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:5875-5885 doi: 10.1021/acs.inorgchem.9b00242

    6. [6]

      Minguez E G, Coronado E. Chem. Soc. Rev., 2018, 47:533-557 doi: 10.1039/C7CS00653E

    7. [7]

      Cui Y J, Yue Y F, Qian G D, et al. Chem. Rev., 2012, 112:1126-1162 doi: 10.1021/cr200101d

    8. [8]

      Gao L L, Zhang J, Zhai L J, et al. J. Solid State Chem., 2019, 271:346-353 doi: 10.1016/j.jssc.2019.01.008

    9. [9]

      Morrison C N, Powell A K, Kostakis G E, et al. Cryst. Growth Des., 2011, 11:3653-3662 doi: 10.1021/cg2007028

    10. [10]

      Gu J Z, Gao Z Q, Tang Y. Cryst. Growth Des., 2012, 12:3312-3323 doi: 10.1021/cg300442b

    11. [11]

      邹训重, 吴疆, 顾金忠, 等.无机化学学报, 2019, 35(9):1705-1711 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20190921&flag=1ZOU Xun-Zhong, WU Jiang, GU Jin-Zhong, et al. Chinese J. Inorg. Chem., 2019, 35(9):1705-1711 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20190921&flag=1

    12. [12]

      Gu J Z, Cui Y H, Liang X X, et al. Cryst. Growth Des., 2016, 16:4658-4670 doi: 10.1021/acs.cgd.6b00735

    13. [13]

      Sánchez-Férez F, Bayés L, Font-Bardia M, et al. Inorg. Chim. Acta, 2019, 494:112-122 doi: 10.1016/j.ica.2019.05.010

    14. [14]

      Zhai Z W, Yang S H, Luo P, et al. Eur. J. Inorg. Chem., 2019:2725-2734

    15. [15]

      顾文君, 顾金忠.无机化学学报, 2017, 33(2):227-236 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20170204&flag=1GU Wen-Jun, GU Jin-Zhong. Chinese J. Inorg. Chem., 2017, 33(2):227-236 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20170204&flag=1

    16. [16]

      赵素琴, 顾金忠.无机化学学报, 2016, 32(9):1611-1618 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20160916&flag=1ZHAO Su-Qin, GU Jin-Zhong. Chinese J. Inorg. Chem., 2016, 32(9):1611-1618 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20160916&flag=1

    17. [17]

      Gu J Z, Wen M, Liang X X. Crystals, 2018, 8:83 doi: 10.3390/cryst8020083

    18. [18]

      Gu J Z, Cai Y, Wen M, et al. Dalton Trans., 2018, 47:14327-14339 doi: 10.1039/C8DT02467G

    19. [19]

      Yue Q, Liu X, Guo W X, et al. CrystEngComm, 2018, 20:4258-4267 doi: 10.1039/C8CE00692J

    20. [20]

      Spek A L. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:9-18

    21. [21]

      Van de Sluis P, Spek A L. Acta Crystallogr. Sect. A:Found. Crystallogr., 1990, A46:194-201

    22. [22]

      Gu J Z, Liang X X, Cai Y, et al. Dalton Trans., 2017, 46:10908-10925 doi: 10.1039/C7DT01742A

    23. [23]

      Chen S S, Sheng L Q, Zhao Y, et al. Cryst. Growth Des., 2016, 16:229-241 doi: 10.1021/acs.cgd.5b01133

  • Figure 1  Drawing of asymmetric unit of complex 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules are omitted for clarity; Symmetry codes: A:-x, -y, -z+1; B: x+1, y, z; C: -x, -y+1, -z+1

    Scheme 1  Coordination modes of L4- ligands in complexes 1 and 2

    Figure 2  Tetra-manganese(Ⅱ) subunit in 1

    Figure 3  Two dimensional sheet in complex 1 viewed along c axis

    Figure 4  Drawing of asymmetric unit of complex 2 with 30% probability thermal ellipsoids

    Figure 5  Di-zinc(Ⅱ) subunit in 2

    Figure 6  Two dimensional sheet of 2 viewed along a axis

    Figure 7  TGA curves of complexes 1~2

    Figure 8  Solid-state emission spectra of H4L and complex 2 at room temperature

    Figure 9  Temperature dependence of χMT (○) and 1/χM(□) for complex 1

    Table 1.  Crystal data for complexes 1 and 2

    Complex1 2
    Chemical formula C40H32Mn2N4O14 C21H13Zn2NO10
    Molecular weight 902.49 570.06
    Crystal system Triclinic Monoclinic
    Space group P1 I2/a
    a / nm 1.087 55(9) 1.785 54(8)
    b / nm 1.182 56(11) 1.319 04(4)
    c / nm 1.420 46(11) 1.801 75(6)
    α / (°) 75.404(7)
    β / (°) 88.089(7) 92.856(3)
    γ / (°) 75.299(8)
    V / nm3 1.709 1(3) 4.238 2(3)
    Z 2 8
    F(000) 824 2 288
    θ range for data collection 3.428~25.048 3.464~25.048
    Limiting indices -12 ≤ h≤ 9,
    -14 ≤ k ≤ 13,
    -15 ≤ l ≤ 16
    -20 ≤ h ≤ 21,
    -15 ≤ k ≤ 11,
    -21 ≤ l ≤ 20
    Reflection collected, unique (Rint) 10 937, 6 032 (0.061 7) 13 704, 3 752 (0.040 9)
    Dc / (g·cm-3) 1.579 1.787
    μ / mm-1 0.806 2.324
    Data, restraint, parameter 6 032, 0, 496 3 752, 0, 307
    Goodness-of-fit on F2 0.961 1.048
    Final R indices [I≥2σ(I)] R1, wR2 0.072 1, 0.157 2 0.042 1, 0.103 7
    R indices (all data) R1, wR2 0.121 0, 0.183 6 0.056 1, 0.115 7
    Largest diff. peak and hole / (e·nm-3) 958 and -719 1 260 and -552
    下载: 导出CSV

    Table 2.  Selected bond distances (nm) and bond angles (°) for complexes 1 and 2

    1
    Mn(1)-O(1) 0.214 7(4) Mn(1)-O(6)A 0.205 8(4) Mn(1)-O(8)B 0.203 4(4)
    Mn(1)-N(1) 0.222 3(4) Mn(1)-N(2) 0.228 5(5) Mn(2)-O(2) 0.216 3(4)
    Mn(2)-O(3) 0.217 5(3) Mn(2)-O(3)C 0.217 7(4) Mn(2)-O(9)B 0.214 3(4)
    Mn(2)-N(3) 0.229 6(4) Mn(2)-N(4) 0.229 8(4)
    O(8)B-Mn(1)-O(6)A 110.17(16) O(8)B-Mn(1)-O(1) 97.57(15) O(6)A-Mn(1)-O(1) 92.25(15)
    O(8)B-Mn(1)-N(1) 122.13(17) O(6)A-Mn(1)-N(1) 125.62(18) O(1)-Mn(1)-N(1) 94.61(17)
    O(8)B-Mn(1)-N(2) 90.32(17) O(6)A-Mn(1)-N(2) 93.85(19) O(1)-Mn(1)-N(2) 167.73(17)
    N(1)-Mn(1)-N(2) 73.19(19) O(9)B-Mn(2)-O(2) 97.62(14) O(9)B-Mn(2)-O(3) 94.98(14)
    O(2)-Mn(2)-O(3) 80.29(14) O(9)B-Mn(2)-O(3)C 102.45(15) O(2)-Mn(2)-O(3)C 151.09(14)
    O(3)-Mn(2)-O(3)C 77.46(14) O(9)B-Mn(2)-N(3) 166.85(15) O(2)-Mn(2)-N(3) 80.40(15)
    O(3)-Mn(2)-N(3) 97.48(14) O(3)C-Mn(2)-N(3) 84.43(15) O(9)B-Mn(2)-N(4) 96.56(15)
    O(2)-Mn(2)-N(4) 107.21(15) O(3)-Mn(2)-N(4) 165.22(15) O(3)C-Mn(2)-N(4) 91.03(15)
    N(3)-Mn(2)-N(4) 71.89(16)
    2
    Zn(1)-O(1) 0.196 3(3) Zn(1)-O(7)A 0.192 3(3) Zn(1)-O(8)B 0.192 2(3)
    Zn(1)-N(1) 0.199 8(4) Zn(2)-O(2) 0.195 7(3) Zn(2)-O(6)A 0.195 0(3)
    Zn(2)-O(4)C 0.191 3(4) Zn(2)-O(9)B 0.196 6(3)
    O(7)A-Zn(1)-O(8)B 127.52(15) O(1)-Zn(1)-O(7)A 106.51(15) O(1)-Zn(1)-O(8)B 106.01(15)
    N(1)-Zn(1)-O(7)A 105.44(14) N(1)-Zn(1)-O(8)B 108.10(14) O(1)-Zn(1)-N(1) 99.97(15)
    O(4)C-Zn(2)-O(6)A 95.08(16) O(4)C-Zn(2)-O(2) 117.39(17) O(6)A-Zn(2)-O(2) 112.26(15)
    O(4)C-Zn(2)-O(9)B 118.17(18) O(6)A-Zn(2)-O(9)B 111.88(14) O(9)B-Zn(2)-O(2) 102.42(15)
    Symmetry transformations used to generate equivalent atoms: A: -x, -y, -z+1; B: x+1, y, z; C: -x, -y+1, -z+1 for 1; A: -x+1, -y+1, -z+1; B: -x+1, y+1/2, -z+3/2; C: -x+1, -y+2, -z+1 for 2.
    下载: 导出CSV

    Table 3.  Hydrogen bond lengths (nm) and angles (°) of complex 2

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(10)-H(1W)…O(3) 0.085 0 0.193 7 0.278 7 178.54
    O(10)-H(2W)…O(4)A 0.098 3 0.202 9 0.300 1169.50
    Symmetry code: A: -x+1, -y+2, -z+1.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1473
  • HTML全文浏览量:  66
文章相关
  • 发布日期:  2020-02-10
  • 收稿日期:  2019-07-26
  • 修回日期:  2019-11-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章