Two 3D Pillar-Layered Homochiral Coordination Complexes: Syntheses, Structures and Properties

Zhong-Xuan XU Xue-Lei BAI Qin MENG

Citation:  XU Zhong-Xuan, BAI Xue-Lei, MENG Qin. Two 3D Pillar-Layered Homochiral Coordination Complexes: Syntheses, Structures and Properties[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 165-172. doi: 10.11862/CJIC.2020.029 shu

两个三维柱层式单一手性配位化合物:合成、结构和性质

    通讯作者: 徐中轩, xuzhongxuan4201@163.com
  • 基金项目:

    国家自然科学基金(No.21761036)和贵州省科学技术基金(No.20181182)资助项目

    贵州省科学技术基金 20181182

    国家自然科学基金 21761036

摘要: 在溶剂热合成条件下得到2个单一手性配位聚合物,即[Cd3((R)-CIA)2(bipy)2.5(H2O)2xGuest(1)和[Zn3((R)-CIA)(bmib)2(H2O)2 Cl]·H2xGuest(2)((R)-H3CIA=(R)-5-(1-羧基乙氧基)间苯二甲酸,bipy=4,4'-联吡啶,bmib=1,4-双(2-甲基-1H-咪唑-1-基)苯)。X射线单晶结构分析揭示配合物12都是柱层式结构的三维框架。从拓扑分析的角度看,配位物1具有(3,3,3,6,6)-连接的网络,拓扑符号为(4.522(4.822(42.68.83.102)(42.68.83.92)(5.8.9)2,而配合物2是(3,4,4)-连接的网络,拓扑符号为(6·722(6·752(62·74)。此外,对上述配合物的热稳定性、圆二色谱和荧光性质也做了研究。

English

  • Chirality as a basic feature of nature plays an important role in living system and artificial mater- ials[1-2]. Current research on homochiral coordination polymers (HCPs) is rapidly expanding not only due to their intriguing architectures but also for their potential applications in enantioselective separation, chiral catalysis and so on[3-5]. Some synthetic strategies, including spontaneous resolution, asymmetric induction and use of chiral ligands, have been developed to construct HCPs[6-8]. Among them, the most effective method to build HCPs is to select an enantiopure compound as ligand to assemble with metal ions. Therefore, choice of chiral ligands is a key factor to obtain HCPs[9-10].

    As a semirigid chiral ligand, (R)-5-(1-carboxye-thoxy)isophthalic acid ((R)-H3CIA) (Scheme 1) was successfully synthesized from natural lactic acid and dimethyl 5-hydroxyisophthalate (Scheme 1a)[11]. Con-taining chiral lactate unit and rigid isophthalic acid unit, the (R)-H3CIA has the following two advantages: (a) rigid carboxylate groups of isophthalic acid unit can efficiently construct interesting various structures; (b) the enantiopure lactate unit supplies the chiral source for construction of HCPs. Until now, (R)-H3CIA has been used in the fabrication of related HCPs[12]. Moreover, to enhance the structural dimension and stability of HCPs, using nitrogenous compounds as auxiliary linkers is also a feasible method[13].

    Scheme 1

    Scheme 1.  Structures of the lactate derivative linker (a) and auxiliary N-donor ligands (b)

    In order to further obtain characteristic HCPs of lactic acid, auxiliary bipy and bmib ligands were selected to assist (R)-H3CIA to build HCPs (Scheme 1). Herein, two 3D HCPs, namely, [Cd3((R)-CIA)2(bipy)2.5(H2O)2xGuest (1) and [Zn3((R)-CIA)(bmib)2(H2O)2Cl]·H2xGuest (2) (bipy=4, 4′-bipyridine, bmib=1, 4-bis(2 -methyl-1H-imidazol-1-yl)benzene), were successfully synthesized under solvothermal conditions. In this work, we report their syntheses, crystal structures, thermal stabilities, CD spectra and luminescent properties.

    All chemical reagents and solvents were commer-cially purchased and used without further purification except for (R)-H3CIA, which was synthesized accord-ing to the documented procedures[11]. Elemental analysis was performed on a Perkin-Elmer 240C elemental analyzer. IR spectra were recorded as KBr pellets on a FTIR-650 FT-IR spectrometer from 400 to 4 000 cm-1. The powder X-ray diffraction (PXRD) analysis was performed on a Rigaku Dmax2500 diffractometer(Voltage: 40 kV, Current: 40 mA) with Cu radiation (λ=0.154 056 nm) in a range of 5.00°~50.00°. Solid-state photoluminescence spectra were performed on a Hitachi FL-4500 fluorescence spectrophotometer. Solid CD spectra were measured on a MOS-450 spectropolarimeter.

    A mixture of Cd(NO3)2·4H2O (62 mg, 0.2 mmol), bipy (31 mg, 0.2 mmol), (R)-H3CIA (25 mg, 0.1 mmol) and pyrazine (80 mg, 1 mmol) was dissolved in 5 mL N, N-diethyl formamide (DEF)/methanol/H2O (2:1:2, V/V). Then the solution was sealed in a 23 mL Teflon-lined stainless steel autoclave and heated under autogenous pressure at 100 ℃ for three days. The colorless crystals were collected, washed with ethanol and dried in the air. Yield: 40% (based on (R)-H3CIA). Anal. Calcd. for C47H34Cd3N5O16(%): C, 44.73; H, 2.72; N, 5.58. Found(%): C, 42.24; H, 2.42; N, 5.04. IR (KBr, cm-1): 3 403(m), 1 603(s), 1 559(s), 1 417(m), 1 367(m), 1 448(m), 1 250(w), 1 219(w), 804(w), 631(w).

    A mixture of ZnCl2 (27 mg, 0.2 mmol), bmib (48 mg, 0.2 mmol), (R)-H3CIA (25 mg, 0.1 mmol) and pyrazine (80 mg, 1 mmol) was dissolved in 4 mL N, N-dimethyl acetamide (DMA)/H2O (1:1, V/V). Then the solution was sealed in a 23 mL Teflon-lined stainless steel autoclave and heated under autogenous pressure at 120 ℃ for three days. The colorless crystals were collected, washed with ethanol and dried in the air. Yield: 30% (based on (R)-H3CIA). Anal. Calcd. for C39H36ClN8O7.50Zn2(%): C, 51.88; H, 4.02; N, 12.41. Found(%): C, 48.72; H, 3.64; N, 10.96. IR (KBr, cm-1): 3 453(m), 3 137(w), 1 621(m), 1 584(m), 1 516(s), 1 411 (s), 1 300(m), 1 151(m), 1 108(m), 1 008(m), 841(m), 737(m), 669(m), 563(w), 507(w).

    The data of 1 and 2 were collected on a Rigaku four-circle 003 CCD diffractometer using graphite monochromated Mo radiation (λ=0.071 073 nm) at room temperature. The integration and reduction of data were performed with Rigaku OD 2015 software. Empirical absorption corrections were applied by using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structures of complexes were solved by the direct methods in Olex2-1.2 using SHELXS-2017 and refined on F2 by full-matrix least-squares using the SHELXL-2017 program package[14-15]. All the hydrogen atoms were placed on their calculated positions and treated as riding atoms with default parameters. Some disordered guest molecules in frameworks could not be identified by X-ray single crystal structure analysis. Further-more, because complexes 1 and 2 were synthesized in mixed solvents, the disordered guest molecules also could not be decided by TGA and elemental analysis. For these reasons, the disordered guest molecules had to be subtracted from the reflection data through the SQUEEZE method and further discussions were not performed[16]. Crystallographic data and experimental details for structural analysis are summarized in Table 1, and selected bond lengths and angles of complexes 1~2 are summarized in Table 2.

    Table 1

    Table 1.  Crystal data and structure refinement details for complexes 1 and 2
    下载: 导出CSV
    Complex 1 2
    Formula C47H34Cd3N5O16 C39H36ClN8O7.50Zn2
    Formula weight 1 261.99 902.95
    Crystal system Monoclinic Orthorhombic
    Space group P2 P21212
    a/nm 1.030 42(4) 3.437 13(14)
    b/nm 1.173 80(4) 1.598 41(7)
    c/nm 2.411 63(11) 0.756 69(3)
    β/(°) 98.101(4)
    V/nm3 2.887 8(2) 4.157 2(3)
    Z 2 2
    Dc/(g·cm-3) 1.451 1.443
    Absorption coefficient/mm-1 1.158 1.277
    F(000) 1 246 1 852
    θ range/(°) 4.035 0~30.309 0 3.918 0~30.523 0
    GOF 1.000 0.973
    R1a [I > 2σ(I)] 0.028 9 0.042 5
    wR2b (F2) [I > 2σ(I)] 0.067 0 0.091 4
    Final R1 value (all data) 0.032 9 0.067 6
    Final wR (F2) value (all data) 0.068 1 0.097 3
    Flack parameter 0.006(11) -0.006(5)
      aR1=∑||Fo|-|Fc||∑|Fo|; b wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2.

    Table 2

    Table 2.  Selected bond length (nm) and angles (°) for 1 and 2
    下载: 导出CSV
    1
    Cd(1)-O(5)#1 0.232 0(3) Cd(1)-N(2)#2 0.229 0(4) Cd(2)-O(2) 0.244 1(4)
    Cd(1)-O(4) 0.232 1(3) Cd(1)-O(7)#3 0.244 4(3) Cd(2)-O(2W) 0.230 2(4)
    Cd(1)-N(1) 0.232 9(4) Cd(1)-O(3)#3 0.240 0(3) Cd(2)-O(1) 0.245 1(4)
    Cd(2)-N(3) 0.236 1(4) Cd(2)-O(8) 0.234 8(5) Cd(2)-O(9) 0.247 7(5)
    Cd(2)-O(1W) 0.231 3(6) Cd(3)-O(12)#4 0.229 7(3) Cd(3)-O(13)#3 0.242 0(3)
    Cd(3)-O(11) 0.226 6(3) Cd(3)-O(14)#3 0.240 3(3) Cd(3)-N(4) 0.234 3(4)
    Cd(3)-N(5)#2 0.231 5(4)
    O(5)#1-Cd(1)-O(7)#2 136.95(10) O(4)-Cd(1)-O(6)#2 85.39(10) N(1)-Cd(1)-O(7)#2 99.51(14)
    N(1)-Cd(1)-O6#2 86.34(14) N(2)#3-Cd(1)-O(5)#1 87.67(13) N(2)-Cd(1)-O(4) 89.63(13)
    N(2)-Cd-N(1) 173.45(12) N(2)#3-Cd(1)-O(7)#2 85.26(12) N(2)#3-Cd(1)-O(6) 100.13(13)
    O(6)#2-Cd(1)-O(7)#2 53.84(10) O(12)#4-Cd(3)-O(13)#2 93.42(11) O(12)#4-Cd(3)-O(14)#2 147.13(11)
    O(12)#4-Cd(3)-N(4) 87.98(13) O(12)#4-Cd(3)-N(5)#3 88.38(14) O(11)-Cd(3)-O(12)#4 126.88(11)
    O(11)-Cd(3)-O(13)#2 139.65(10) O(11)-Cd(3)-O(14)#2 85.71(10) O(11)-Cd(3)-N(4) 91.11(14)
    O(11)-Cd(3)-N(5)#3 89.56(15) O(14)#2-Cd(3)-O(13)#2 54.37(10) N(4)-Cd(3)-O(13)#2 88.21(14)
    N(4)-Cd(3)-O(14)#2 96.43(13) N(5)#3-Cd(3)-O(13)#2 93.90(14) N(5)#3-Cd(3)-O(14)#2 87.66(13)
    N(5)#3-Cd(3)-N(4) 175.89(12) O(2)-Cd(2)-O(1) 53.91(12) O(2)-Cd(2)-O(9) 167.94(13)
    O(2W)-Cd(2)-O(2) 82.15(14) O(2W)-Cd(2)-O(1) 86.42(15) O(2W)-Cd(2)-N(3) 167.76(14)
    O(2W)-Cd(2)-O(8) 94.41(16) O(2W)-Cd(2)-O(9) 91.04(15) O(2W)-Cd(2)-O(1W) 88.6(2)
    O(1)-Cd(2)-O(9) 135.91(14) N(3)-Cd(2)-O(2) 85.67(13) N(3)-Cd(2)-O(1) 85.46(14)
    N(3)-Cd(2)-O(9) 101.16(15) O(8)-Cd(2)-O(2) 136.43(13) O(8)-Cd(2)-O(1) 82.57(14)
    O(8)-Cd(2)-N(3) 93.60(15) O(8)-Cd(2)-O(9) 53.72(14) O(1W)-Cd(2)-O(2) 80.8(2)
    O(1W)-Cd(2)-O(1) 134.7(2 O(1W)-Cd(2)-N(3) 90.7(2) O(1W)-Cd(2)-O(8) 142.7(2)
    O(1W)-Cd(2)-O(9) 89.1(2) O(5)#1-Cd(1)-O(4) 129.37(10) O(5)#1-Cd(1)-N(1) 87.59(14)
    2
    Zn(2)-O(1)#1 0.196 8(3) Zn(2)-O(1) 0.196 8(3) Zn(2)-N(8)#2 0.202 1(3)
    Zn(2)-N(8)#3 0.202 1(3) Zn(1)-O(6) 0.194 4(3) Zn(1)-O(4)#4 0.193 6(3)
    Zn(1)-N(1) 0.204 1(3) Zn(1)-N(5) 0.200 4(3) Zn(3)-Cl(1) 0.222 91(14)
    Zn(3)-Cl(1)#5 0.222 91(14) Zn(3)-N(4) 0.203 5(3) Zn(3)-N(4)#5 0.203 5(3)
    O(1)#1-Zn(2)-O(1) 94.36(17) O(1)-Zn(2)-N(8)#2 103.08(12) O(1)#1-Zn(2)-O(8)#3 103.09(12)
    O(1)#1-Zn(2)-O(8)#2 127.43(13) O(1)-Zn(2)-N(8)#3 127.43(13) N(8)#3-Zn(2)-N(8)#2 104.3(2)
    O(6)-Zn(1)-N(1) 98.59(14) O(6)-Zn(1)-N(5) 132.51(13) O(6)-Zn(1)-N5 132.51(13)
    O(4)#4-Zn(1)-O(6) 107.78(15) O(4)#4-Zn(1)-N(1) 99.98(13) O(4)#4-Zn(1)-N(5) 109.39(14)
    N(5)-Zn(1)-N(1) 102.94(15) Cl(1)-Zn(3)-Cl(1)#3 115.70(9) N(4)#5-Zn(3)-Cl(1) 107.46(11)
    N(4)-Zn(3)-Cl(1)#5 107.46(11) N(4)#5-Zn(3)-Cl(1)#5 109.24(12) N(4)-Zn(3)-Cl(1) 109.23(12)
    N(4)#5-Zn(3)-N(4) 107.5(2)
      Symmetry codes: #1: -x, y, 1-z; #2: x, 1+y, z; #3: -1+x, y, z; #4: -x, y, -z for 1; #1: 2-x, 1-y, z; #2: 2-x, 1-y, 2+z; #3: x, y, 2+z; #4: 3/2-x, 1/2+y, 2-z; #5: 1-x, 1-y, z for 2.

    CCDC: 1920451, 1; 1920452, 2.

    X-ray single crystal structure analysis reveals that complex 1 crystallizes in monoclinic chiral space group P2 with Flack parameter of 0.006(11). The asy-mmetric unit of 1 is comprised of three Cd2+ centers, two deprotonated (R)-CIA3- ligands, two and a half bipy ligands and two coordinated water molecules. Each of (R)-CIA3- ligand as κ6-linker is connected by four Cd2+ centers. For the unique coordination modes of (R)-CIA3- ligands, two dinuclear clusters Cd2(CO2)4 are formed (Fig. 1). In the Cd2(CO2)4 clusters, Cd1 and Cd3 centers with similar octahedral geometries are coordinated by four oxygen atoms from three carboxylate groups of three isophthalic units and two nitrogen atoms from two bipy ligands, respectively. Unlike Cd1 and Cd3, Cd2 adopts pentagonal dipyra-midal configuration, and is coordinated by a nitrogen atom of bipy ligand, four carboxylate oxygen atoms from two lactate units and two water molecules.

    Figure 1

    Figure 1.  Coordination environment of Cd(Ⅱ) ions in complex 1

    Ellipsoid probability level: 50%; Symmetry codes: #1: x, -1+y, -z; #2:-1+x, y, z; #3:-x, y, -z; #4: 1+x, y, z; #5: 1-x, y, -z; #6: x, 1+y, z; #7: -x, y, 1-z

    Because the framework of 1 contains two distinct ligands (bipy and (R)-CIA3-), to further simplify the complicated 3D frameworks, we divide the whole framework into two part according to the different ligands. If the connectivity between Cd(Ⅱ) ions and (R)-CIA3- are only considered, a 2D Cd-(R)-CIA layer is generated (Fig. 2). In the Cd-(R)-CIA layer, the dinuclear Cd2(CO2)4 is 4-connected node and the (R)-CIA3- is 3-connected node. Thus, the 2D Cd-(R)-CIA layer of 1 can be described as a (3, 4)-connected net (Fig. 2b). The adjacent Cd-(R)-CIA layers are further linked together by bipy ligands to form a 3D pillared-layer framework (Fig. 2c). In the 3D framework, (R)-CIA3- ligands still act as 3-connected nodes. Each Cd2(CO2)4 cluster as 6-connected node are linked by four (R)-CIA3- ligands and four bipy ligands, and each Cd3 ion is linked by two (R)-CIA3- ligands and a bipy ligand as 3-connected nodes. As a result, the whole 3D framework of 1 is topologically represented as a (3, 3, 3, 6, 6)-connected net with a point symbol of (4.52)2(4.82)2(42.68.83.102)(42.68.83.92)(5.8.9)2[17].

    Figure 2

    Figure 2.  Schematic illustration of 1: (a) 2D Cd-(R)-CIA layer; (b) topological net of Cd-(R)-CIA layer; (c) 3D framework constructed by Cd-(R)-CIA layers and bipy ligands; (d) 3, 3, 3, 6, 6-connected 3D net

    Symmetry codes: #1:-x, y, 1-z; #2:-1+x, y, z; #3: 1-x, y, 1-z; #4:-x, y, 1-z

    Complex 2 crystallizes in orthorhombic space group P21212 with Flack parameter of -0.006(5). As shown in Fig. 3, there are two Zn(Ⅱ) ions, one (R)-CIA3- ligand, one chloride ion, two bmib ligands and a guest water molecules in a asymmetric unit of complex 2. Zn1 is in tetrahedral coordination surrounded by two O atoms from two lactate units of (R)-CIA3- and two N atoms from bmib ligands. Zn2 is similar to Zn1 and is coordinated by two O atoms from two isophthalic acid units of (R)-CIA3- and two N atoms from two bmib ligands, forming a tetrahedral coordination environ-ment. Zn3 also adopts a tetrahedral geometry as Zn1 and Zn2, coordinated by two chloride ions and two N atoms from two bmib ligands.

    Figure 3

    Figure 3.  Coordination environment of Zn(Ⅱ) ions in complex 2

    Ellipsoid probability level: 50%; Symmetry codes: #1: 2-x, 1-y, 2+z; #2: x, y, 2+z; #3: 1.5-x, -0.5+y, 2-z; #4: 1.5-x, 0.5+y, 2-z; #5: x, y, -2+z; #6: 1-x, 1-y, z

    In complex 2, if only the connectivity between isophthalic acid units of (R)-CIA3- and Zn1 ions is considered, a right-handed helical chain is generated along b-axis (Fig. 4a). And then a helical 2D (R)-CIA-Zn layer is formed by the right-handed helical chains, lactate units and Zn(3) ions (Fig. 4b). In the (R)-CIA-Zn layer, the (R)-CIA3- ligands can be viewed as 3-connected nodes, thus it can be reduced into a hcb net (Fig. 4c)[17]. Finally, the adjacent (R)-CIA-Zn layers are further linked together by bmib ligands, resulting in a 3D nonclassical pillared-layer framework (Fig. 4d). In the 3D framework, the (R)-CIA3- ligands act as three-connected nodes, Zn1 and Zn2 centers are regarded as 4-connected nodes, respectively, and bmib ligands are only simple linkers. Therefore, the whole framework of 2 is topologically represented as a 3, 4, 4-connected net with a point symbol of (6·72)2(6·75)2(62·74) (Fig. 4d)[17].

    Figure 4

    Figure 4.  Schematic illustration of 2: (a) right-handed helical chain constructed by (R)-CIA3- fragments and Zn(Ⅱ) ions; (b) 2D (R)-CIA-Zn layer; (c) hcb net of Zn-(R)-CIA layer; (d) 3D framework constructed by Zn-(R)-CIA layers and bmib ligands; (e) (3, 4, 4)-connected topological net

    Symmetry codes: #1: x, 2+y, z; #2:1.5-x, 1.5+y, 2-z; #3: x, 1+y, z; #4: 1.5-x, 0.5+y, 2-z in (a); #1: 0.5+x, 1.5-y, 2-z; #2: 2-x, 1-y, 2-z; #3: 1.5-x, -0.5+y, 2-z in (b)

    As far as complexes 1 and 2 are concerned, the same enantiomeric ligands but different metal ions and auxiliary ligands are used to construct the corresponding frameworks. From the structural descriptions above, chiral ligand plays different roles in the construction of various structures. In complex 1, the (R)-CIA3- ligands as κ6-linkers present two similar conformations to connect four Cd(Ⅱ) centers to construct a 2D (R)-CIA-Cd layer. In the (R)-CIA-Cd layer, two dinuclear clusters Cd2(CO2)4 are formed by rigid isophthalic acid units of (R)-CIA3- ligands and Cd(Ⅱ) centers. Compared with complex 1, rigid isophthalic acid units of (R)-CIA3- ligands and Zn(Ⅱ) centers build an interesting right-handed helical chain in complex 2. The right-handed helical chain are further linked together to give rise to a 2D (R)-CIA-Zn layer by lactate units of (R)-CIA3- ligands and Zn ions. Apparently, the different metal ions lead to the (R)-CIA3- ligands with different coordination modes in complex 1 and 2. Besides the effects of metal ions, the significant structural differences of the complexes should be also ascribed to the introduction of the auxiliary N-donor ligands, which makes complexes 1 and 2 show 3D pillar-layered framework.

    To further study their chiral characteristic, bulk crystal samples of complexes 1 and 2 were selected to measure the solid-state circular dichroism (CD) spectra in KCl plates between 200 and 600 nm. As shown in Fig. 5, there is an obvious Cotton effect at 268 nm in the spectra of complex 1. Furthermore, complex 2 had two positive CD signals at 255 and 285 nm, and a negative CD signal at 275 nm. These results confirm that the bulk samples of complexes 1 and 2 are homochiral, and chirality of ligand (R)-H3CIA can be transferred to the corresponding coordination complex aggregates.

    Figure 5

    Figure 5.  Solid-state CD spectra of complexes 1 and 2

    Fluorescence properties of the inorganic-organic hybrid coordination polymers containing d10 metal have attracted considerable attention for their potential applications. Hence, the solid-state photoluminescent spectra of complexes 1 and 2 were investigated at room temperature. As depicted in Fig. 6, the photo-luminescence spectra have emission peaks with maxima at 464 nm (λex=358 nm) for 1, and 441 nm (λex=348 nm) for 2. To better understand the nature of the emission band, the photoluminescence spectra of ligands (R)-H3CIA and bipy were also measured. The results showed that (R)-H3CIA displayed an emission band at 404 nm (λex=336 nm), while bipy ligand had emission peak with maxima at 420 nm (λex=353 nm). As compared to the ligands, emission maxima of 1 and 2 have distinct red-shifts, respectively, which should be ascribed to intraligand (n-π* or π-π*) emission[18-19].

    Figure 6

    Figure 6.  Photoluminescence spectra of the ligands and complexes

    In summary, two homochiral coordination polymers (HCPs) have been synthesized by using lactic acid derivative (R)-H3CIA as chiral ligand with the help of rigid auxiliary ligands. In HCPs 1 and 2, the (R)-CIA3- ligands can adopt different binding sites with metal ions to build various pillar-layered frameworks. The successful synthesis of complexes 1 and 2 shows that (R)-H3CIA is a class of effective chiral ligand for constructing HCPs due to its inherent chirality and multiple coordination modes.

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      Agranat I, Caner H, Caldwell J. Nat. Rev. Drug Discovery, 2002, 1:753-768

    2. [2]

      Barron L D. Nature, 2000, 405:895-896 

    3. [3]

      Tan C X, Han X, Li Z J, et al. J. Am. Chem. Soc., 2018, 140:16229-16236

    4. [4]

      Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112:1196-1231

    5. [5]

      Han Q, He C, Zhao M, et al. J. Am. Chem. Soc., 2013, 135:10186-10189

    6. [6]

      Mihalcea I, Zill N, Mereacre V, et al. Cryst. Growth Des., 2014, 14:4729-4734

    7. [7]

      Wen Y H, Sheng T L, Sun Z H, et al. Chem. Commun., 2014, 50:8320-8323

    8. [8]

      Kumar N, Khullar S, Singh Y, et al. CrystEngComm, 2014, 16:6730-6744

    9. [9]

      Dubey M, Kumar A, Dhavale V A, et al. CrystEngComm, 2015, 17:8202-8206

    10. [10]

      吉沁, 陈立庄.无机化学学报, 2017, 33(5):874-880JI Qin, CHENG Li-Zhuang. Chinese J. Inorg. Chem., 2017, 33(5):874-880 

    11. [11]

      Xu Z X, Xiao Y, Kang Y, et al. Cryst. Growth Des., 2015, 15:4676-4686

    12. [12]

      Xu Z X, Liu L Y, Zhang J. Inorg. Chem., 2016, 55:6355-6357

    13. [13]

      Gu Z G, Zhang C H, Zhang J, et al. Chem. Soc. Rev., 2016, 45:3122-3144

    14. [14]

      Dolomanov O V, Bourhis L J, Gildea R J, et al. J. Appl. Cryst., 2009, 42:339-341

    15. [15]

      Sheldrick G M. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:3-8 

    16. [16]

      Speck A L. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:9-18 

    17. [17]

      Aexandrov E V, Blatov V A, Kochetkov A V, et al. CrystEngComm, 2011, 13:3947-3958

    18. [18]

      刘露, 李英, 王键吉, 等.无机化学学报, 2019, 35(3):546-552LIU Lu, LI Ying, WANG Jian-Ji, et al. Chinese J. Inorg. Chem., 2019, 35(3):546-552 

    19. [19]

      Cui P, Chen Z, Gao D L, et al. Cryst. Growth Des., 2010, 10:4370-4378

  • Scheme 1  Structures of the lactate derivative linker (a) and auxiliary N-donor ligands (b)

    Figure 1  Coordination environment of Cd(Ⅱ) ions in complex 1

    Ellipsoid probability level: 50%; Symmetry codes: #1: x, -1+y, -z; #2:-1+x, y, z; #3:-x, y, -z; #4: 1+x, y, z; #5: 1-x, y, -z; #6: x, 1+y, z; #7: -x, y, 1-z

    Figure 2  Schematic illustration of 1: (a) 2D Cd-(R)-CIA layer; (b) topological net of Cd-(R)-CIA layer; (c) 3D framework constructed by Cd-(R)-CIA layers and bipy ligands; (d) 3, 3, 3, 6, 6-connected 3D net

    Symmetry codes: #1:-x, y, 1-z; #2:-1+x, y, z; #3: 1-x, y, 1-z; #4:-x, y, 1-z

    Figure 3  Coordination environment of Zn(Ⅱ) ions in complex 2

    Ellipsoid probability level: 50%; Symmetry codes: #1: 2-x, 1-y, 2+z; #2: x, y, 2+z; #3: 1.5-x, -0.5+y, 2-z; #4: 1.5-x, 0.5+y, 2-z; #5: x, y, -2+z; #6: 1-x, 1-y, z

    Figure 4  Schematic illustration of 2: (a) right-handed helical chain constructed by (R)-CIA3- fragments and Zn(Ⅱ) ions; (b) 2D (R)-CIA-Zn layer; (c) hcb net of Zn-(R)-CIA layer; (d) 3D framework constructed by Zn-(R)-CIA layers and bmib ligands; (e) (3, 4, 4)-connected topological net

    Symmetry codes: #1: x, 2+y, z; #2:1.5-x, 1.5+y, 2-z; #3: x, 1+y, z; #4: 1.5-x, 0.5+y, 2-z in (a); #1: 0.5+x, 1.5-y, 2-z; #2: 2-x, 1-y, 2-z; #3: 1.5-x, -0.5+y, 2-z in (b)

    Figure 5  Solid-state CD spectra of complexes 1 and 2

    Figure 6  Photoluminescence spectra of the ligands and complexes

    Table 1.  Crystal data and structure refinement details for complexes 1 and 2

    Complex 1 2
    Formula C47H34Cd3N5O16 C39H36ClN8O7.50Zn2
    Formula weight 1 261.99 902.95
    Crystal system Monoclinic Orthorhombic
    Space group P2 P21212
    a/nm 1.030 42(4) 3.437 13(14)
    b/nm 1.173 80(4) 1.598 41(7)
    c/nm 2.411 63(11) 0.756 69(3)
    β/(°) 98.101(4)
    V/nm3 2.887 8(2) 4.157 2(3)
    Z 2 2
    Dc/(g·cm-3) 1.451 1.443
    Absorption coefficient/mm-1 1.158 1.277
    F(000) 1 246 1 852
    θ range/(°) 4.035 0~30.309 0 3.918 0~30.523 0
    GOF 1.000 0.973
    R1a [I > 2σ(I)] 0.028 9 0.042 5
    wR2b (F2) [I > 2σ(I)] 0.067 0 0.091 4
    Final R1 value (all data) 0.032 9 0.067 6
    Final wR (F2) value (all data) 0.068 1 0.097 3
    Flack parameter 0.006(11) -0.006(5)
      aR1=∑||Fo|-|Fc||∑|Fo|; b wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2.
    下载: 导出CSV

    Table 2.  Selected bond length (nm) and angles (°) for 1 and 2

    1
    Cd(1)-O(5)#1 0.232 0(3) Cd(1)-N(2)#2 0.229 0(4) Cd(2)-O(2) 0.244 1(4)
    Cd(1)-O(4) 0.232 1(3) Cd(1)-O(7)#3 0.244 4(3) Cd(2)-O(2W) 0.230 2(4)
    Cd(1)-N(1) 0.232 9(4) Cd(1)-O(3)#3 0.240 0(3) Cd(2)-O(1) 0.245 1(4)
    Cd(2)-N(3) 0.236 1(4) Cd(2)-O(8) 0.234 8(5) Cd(2)-O(9) 0.247 7(5)
    Cd(2)-O(1W) 0.231 3(6) Cd(3)-O(12)#4 0.229 7(3) Cd(3)-O(13)#3 0.242 0(3)
    Cd(3)-O(11) 0.226 6(3) Cd(3)-O(14)#3 0.240 3(3) Cd(3)-N(4) 0.234 3(4)
    Cd(3)-N(5)#2 0.231 5(4)
    O(5)#1-Cd(1)-O(7)#2 136.95(10) O(4)-Cd(1)-O(6)#2 85.39(10) N(1)-Cd(1)-O(7)#2 99.51(14)
    N(1)-Cd(1)-O6#2 86.34(14) N(2)#3-Cd(1)-O(5)#1 87.67(13) N(2)-Cd(1)-O(4) 89.63(13)
    N(2)-Cd-N(1) 173.45(12) N(2)#3-Cd(1)-O(7)#2 85.26(12) N(2)#3-Cd(1)-O(6) 100.13(13)
    O(6)#2-Cd(1)-O(7)#2 53.84(10) O(12)#4-Cd(3)-O(13)#2 93.42(11) O(12)#4-Cd(3)-O(14)#2 147.13(11)
    O(12)#4-Cd(3)-N(4) 87.98(13) O(12)#4-Cd(3)-N(5)#3 88.38(14) O(11)-Cd(3)-O(12)#4 126.88(11)
    O(11)-Cd(3)-O(13)#2 139.65(10) O(11)-Cd(3)-O(14)#2 85.71(10) O(11)-Cd(3)-N(4) 91.11(14)
    O(11)-Cd(3)-N(5)#3 89.56(15) O(14)#2-Cd(3)-O(13)#2 54.37(10) N(4)-Cd(3)-O(13)#2 88.21(14)
    N(4)-Cd(3)-O(14)#2 96.43(13) N(5)#3-Cd(3)-O(13)#2 93.90(14) N(5)#3-Cd(3)-O(14)#2 87.66(13)
    N(5)#3-Cd(3)-N(4) 175.89(12) O(2)-Cd(2)-O(1) 53.91(12) O(2)-Cd(2)-O(9) 167.94(13)
    O(2W)-Cd(2)-O(2) 82.15(14) O(2W)-Cd(2)-O(1) 86.42(15) O(2W)-Cd(2)-N(3) 167.76(14)
    O(2W)-Cd(2)-O(8) 94.41(16) O(2W)-Cd(2)-O(9) 91.04(15) O(2W)-Cd(2)-O(1W) 88.6(2)
    O(1)-Cd(2)-O(9) 135.91(14) N(3)-Cd(2)-O(2) 85.67(13) N(3)-Cd(2)-O(1) 85.46(14)
    N(3)-Cd(2)-O(9) 101.16(15) O(8)-Cd(2)-O(2) 136.43(13) O(8)-Cd(2)-O(1) 82.57(14)
    O(8)-Cd(2)-N(3) 93.60(15) O(8)-Cd(2)-O(9) 53.72(14) O(1W)-Cd(2)-O(2) 80.8(2)
    O(1W)-Cd(2)-O(1) 134.7(2 O(1W)-Cd(2)-N(3) 90.7(2) O(1W)-Cd(2)-O(8) 142.7(2)
    O(1W)-Cd(2)-O(9) 89.1(2) O(5)#1-Cd(1)-O(4) 129.37(10) O(5)#1-Cd(1)-N(1) 87.59(14)
    2
    Zn(2)-O(1)#1 0.196 8(3) Zn(2)-O(1) 0.196 8(3) Zn(2)-N(8)#2 0.202 1(3)
    Zn(2)-N(8)#3 0.202 1(3) Zn(1)-O(6) 0.194 4(3) Zn(1)-O(4)#4 0.193 6(3)
    Zn(1)-N(1) 0.204 1(3) Zn(1)-N(5) 0.200 4(3) Zn(3)-Cl(1) 0.222 91(14)
    Zn(3)-Cl(1)#5 0.222 91(14) Zn(3)-N(4) 0.203 5(3) Zn(3)-N(4)#5 0.203 5(3)
    O(1)#1-Zn(2)-O(1) 94.36(17) O(1)-Zn(2)-N(8)#2 103.08(12) O(1)#1-Zn(2)-O(8)#3 103.09(12)
    O(1)#1-Zn(2)-O(8)#2 127.43(13) O(1)-Zn(2)-N(8)#3 127.43(13) N(8)#3-Zn(2)-N(8)#2 104.3(2)
    O(6)-Zn(1)-N(1) 98.59(14) O(6)-Zn(1)-N(5) 132.51(13) O(6)-Zn(1)-N5 132.51(13)
    O(4)#4-Zn(1)-O(6) 107.78(15) O(4)#4-Zn(1)-N(1) 99.98(13) O(4)#4-Zn(1)-N(5) 109.39(14)
    N(5)-Zn(1)-N(1) 102.94(15) Cl(1)-Zn(3)-Cl(1)#3 115.70(9) N(4)#5-Zn(3)-Cl(1) 107.46(11)
    N(4)-Zn(3)-Cl(1)#5 107.46(11) N(4)#5-Zn(3)-Cl(1)#5 109.24(12) N(4)-Zn(3)-Cl(1) 109.23(12)
    N(4)#5-Zn(3)-N(4) 107.5(2)
      Symmetry codes: #1: -x, y, 1-z; #2: x, 1+y, z; #3: -1+x, y, z; #4: -x, y, -z for 1; #1: 2-x, 1-y, z; #2: 2-x, 1-y, 2+z; #3: x, y, 2+z; #4: 3/2-x, 1/2+y, 2-z; #5: 1-x, 1-y, z for 2.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  26
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-11-09
  • 网络出版日期:  2020-01-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章