Syntheses, Crystal Structures, Luminescent and Magnetic Properties of Two 1D Cadmium(Ⅱ) and Nickel(Ⅱ) Coordination Polymers

Yu LI Yong-Xuan CHEN Na ZHAO An-Sheng FENG Xun-Zhong ZOU

Citation:  LI Yu, CHEN Yong-Xuan, ZHAO Na, FENG An-Sheng, ZOU Xun-Zhong. Syntheses, Crystal Structures, Luminescent and Magnetic Properties of Two 1D Cadmium(Ⅱ) and Nickel(Ⅱ) Coordination Polymers[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(1): 192-206. doi: 10.11862/CJIC.2020.017 shu

一维镉(Ⅱ)和镍(Ⅱ)配位聚合物的合成、晶体结构、荧光及磁性质

    通讯作者: 赵娜, 2017018009@gdip.edu.cn
    邹训重, 2012009035@gdip.edu.cn
  • 基金项目:

    广东轻院优秀青年基金项目 QN2018-007

    广东省自然科学基金 2016A030313761

    广东轻院科技成果培育项目 KJPY2018-010

    生物无机与合成化学教育部重点实验室开放基金 2016

    广州市科技计划项目 201904010381

    广东省高校创新团队项目 2017GKCXTD001

    广东省高等职业院校珠江学者岗位计划资助项目 2015

    广东省高等职业院校珠江学者岗位计划资助项目(2015, 2018), 广东省自然科学基金(No.2016A030313761), 广东轻院珠江学者人才类项目(No.RC2015-001), 生物无机与合成化学教育部重点实验室开放基金(2016), 广东省高校创新团队项目(No.2017GKCXTD001), 广州市科技计划项目(No.201904010381), 广东省大学生科技创新培育专项(No.pdjh2019b0690), 广东轻院科技成果培育项目(No.KJPY2018-010)和广东轻院优秀青年基金项目(No.QN2018-007)资助

    广东轻院珠江学者人才类项目 RC2015-001

    广东省大学生科技创新培育专项 pdjh2019b0690

    广东省高等职业院校珠江学者岗位计划资助项目 2018

摘要: 在水热条件下,用联苯类四羧酸配体(H4L)和菲咯啉(phen)分别与CdCl2·H2O和NiCl2·6H2O反应,合成了2个具有一维链结构的配合物{[M2μ3-L)(phen)3]·5H2O}n(M=Cd(1),Ni(2)),并对其结构、荧光和磁性质进行了研究。结构分析结果表明2个配合物是异质同心的,属于正交晶系,Pbca空间群。2个配合物具有一维链结构,而且这些链通过O-H…O氢键作用进一步形成了二维超分子网络。研究表明,配合物1在室温下能发出蓝色荧光,配合物2中相邻Ni(Ⅱ)离子间存在铁磁相互作用。

English

  • In the past few decades, the design and hydro-thermal syntheses of functional coordination polymers have attracted tremendous attention owing to their fascinating architectures and topologies, as well as potential applications in catalysis, magnetism, lumine-scence, and gas absorption[1-8]. However, it is difficult to predict the structures of coordination polymers, because a lot of factors influence the construction of complexes, such as the structural features of organic ligands, the coordination requirements of metal ions, solvent systems, temperatures, and pH values[9-15].

    In this regard, various types of aromatic polycar-boxylic acids have been proved to be versatile and efficient candidates for constructing diverse coordina-tion polymers due to their rich coordination chemistry, tunable degree of deprotonation, and ability to act as H-bond acceptors and donors[11, 13, 15-19].

    As a combination of the aforementioned aspects and our previous research work, we have selected a novel biphenyl tetracarboxylate ligand, 3-(2, 4-dicar-boxyphenyl)-2, 6-pyridinedicarboxylic acid (H4L) and explored it for the construction of novel coordination polymers. The H4L block possesses the following features: (1) it can twist and rotate freely to generate different angles between the two aromatic planes via the C-C bond to furnish a subtle conformational adaptation; (2) it has nine potential coordination sites (eight carboxylate O donors and one N donor), which can lead to diverse coordination patterns and high dimensionalities, especially when acting as a multiply bridging spacer; (3) apart from a limited number of coordination compounds derived from H4L, this acid block remains poorly used for the generation of coordination polymers[20]. Given these features, the main objective of the present study consisted in the explora-tion of H4L as a novel biphenyl tetracarboxylate block for the assembly of diverse metal-organic networks.

    In this work, we report the syntheses, crystal structures, luminescent and magnetic properties of two Cd(Ⅱ) and Ni(Ⅱ) coordination polymers constructed from biphenyl-type tetracarboxylate ligands.

    All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded by a Bruker EQUINOX 55 spectrometer using KBr pellets. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1. Excitation and emission spectra were recorded on an Edinburgh FLS920 fluorescence spectrometer using the solid samples at room temperature. Magnetic susceptibility data were collected in the 2~300 K temperature range on a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.

    A mixture of CdCl2H2O (0.040 g, 0.20 mmol), H4L (0.033 g, 0.10 mmol), phen (0.060 g, 0.3 mmol), NaOH (0.016 g, 0.40 mmol), and H2O (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Colourless block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 52% (based on H4L). Anal. Calcd. for C51H39Cd2N7O13(%): C 51.79, H 3.32, N 8.29; Found(%): C 51.64, H 3.31, N 8.32. IR(KBr, cm-1): 3 540w, 3 055w, 1 607s, 1 556s, 1 515m, 1 454w, 1 424m, 1 357s, 1 275w, 1 250w, 1 220w, 1 184 w, 1 138w, 1 102w, 1 016w, 908w, 853m, 817w, 781w, 730w, 684w, 638w.

    The preparation of 2 was similar to that of 1 except NiCl2·6H2O was used instead of CdCl2H2O. After cooling the reaction mixture to room temperature, green block-shaped crystals of 2 were isolated manually, washed with distilled water, and dried. Yield: 61% (based on H4L). Anal. Calcd. for C51H39Ni2N7O13(%): C, 56.97; H, 3.66; N, 9.12. Found(%): C, 57.13; H, 3.65; N, 9.07%. IR (KBr, cm-1): 3 572m, 3 045w, 1 618s, 1 541s, 1 510m, 1 464w, 1 408m, 1 367s, 1 275w, 1 209w, 1 184w, 1 148w, 1 097w, 1 010w, 954w, 913w, 857m, 817w, 786w, 765w, 724m, 678w, 664w.

    The compounds are insoluble in water and common organic solvents, such as methanol, ethanol, acetone, and DMF.

    Two single crystals with dimensions of 0.26 mm×0.24 mm×0.23 mm (1) and 0.26 mm×0.22 mm×0.21 mm (2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo radiation (λ=0.071 073 nm) for 1 and Cu radiation (λ=0.154 184 nm) for 2. The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[21]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. Disordered solvent molecules in 1 and 2 were removed using the SQUEEZE routine in PLATON[22]. The number of solvent water molecules was obtained on the basis of elemental and thermogravimetric analyses. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for compounds 1 and 2 are listed in Table 2. Hydrogen bond parameters of compounds 1 and 2 are given in Table 3 and 4.

    Table 1

    Table 1.  Crystal data for compounds 1 and 2
    下载: 导出CSV
    Compound 1 2
    Chemical formula C51H39Cd2N7O13 C51H39Ni2N7O13
    Molecular weight 1 182.72 1 075.31
    Crystal system Orthorhombic Orthorhombic
    Space group Pbca Pbca
    a/nm 1.845 88(7) 1.809 05(5)
    b/nm 1.691 95(6) 1.676 82(4)
    c/nm 3.012 97(11) 3.016 46(8)
    V/nm3 9.409 9(6) 9.150 3(4)
    Z 8 8
    F(000) 4 512 4 272
    θ range for data collection/(°) 3.336~25.049 3.816~ 69.987
    Limiting indices -12 ≤ h ≤ 21, -19 ≤ k ≤ 20, -35 ≤ l ≤ 35 -20 ≤ h ≤ 21, -20 ≤ k ≤ 13, -36 ≤ l ≤ 36
    Reflection collected, unique (Rint) 35 201, 8 304 (0.087 9) 36 483, 8 579 (0.099 0)
    Dc/(g·cm-3) 1.593 1.509
    μ/mm-1 0.972 1.633
    Data, restraint, parameter 8 304, 0, 631 8 579, 0, 640
    Goodness-of-fit on F2 1.142 1.054
    Final R indices [I≥2σ(I)] R1, wR2 0.05 63, 0.097 6 0.075 3, 0.157 5
    R indices (all data) R1, wR2 0.078 1, 0.092 4 0.125 2, 0.183 5
    Largest diff. peak and hole/(e·nm-3) 1 079 and -464 359 and -666

    Table 2

    Table 2.  Selected bond distances (nm) and bond angles (°) for compounds 1 and 2
    下载: 导出CSV
    1
    Cd(1)-O(1) 0.243 6(4) Cd(1)-O(3) 0.232 7(4) Cd(1)-O(8)A 0.220 6(4)
    Cd(1)-N(1) 0.228 7(4) Cd(1)-N(2) 0.232 7(5) Cd(1)-N(3) 0.238 6(5)
    Cd(2)-O(2) 0.226 4(4) Cd(2)-O(5) 0.227 4(4) Cd(2)-N(4) 0.234 3(5)
    Cd(2)-N(5) 0.235 8(5) Cd(2)-N(6) 0.229 4(5) Cd(2)-N(7) 0.239 4(5)
    O(8)A-Cd(1)-N(1) 104.30(15) O(8)A-Cd(1)-N(2) 148.44(18) N(1)-Cd(1)-N(2) 103.70(18)
    O(8)A-Cd(1)-O(3) 105.04(15) N(1)-Cd(1)-O(3) 71.99(15) N(2)-Cd(1)-O(3) 97.21(17)
    O(8)A-Cd(1)-N(3) 81.51(16) N(1)-Cd(1)-N(3) 173.90(17) N(2)-Cd(1)-N(3) 70.21(19)
    O(3)-Cd(1)-N(3) 108.59(16) O(8)A-Cd(1)-O(1) 92.88(15) N(1)-Cd(1)-O(1) 67.87(15)
    N(2)-Cd(1)-O(1) 84.41(16) O(3)-Cd(1)-O(1) 138.96(14) N(3)-Cd(1)-O(1) 110.42(15)
    O(2)-Cd(2)-O(5) 86.00(15) O(2)-Cd(2)-N(6) 102.27(16) O(5)-Cd(2)-N(6) 90.42(18)
    O(2)-Cd(2)-N(4) 92.71(16) O(5)-Cd(2)-N(4) 105.03(16) N(6)-Cd(2)-N(4) 159.25(18)
    O(2)-Cd(2)-N(5) 161.74(15) O(5)-Cd(2)-N(5) 89.59(17) N(6)-Cd(2)-N(5) 95.46(18)
    N(4)-Cd(2)-N(5) 71.34(18) O(2)-Cd(2)-N(7) 98.13(15) O(5)-Cd(2)-N(7) 161.38(17)
    N(6)-Cd(2)-N(7) 71.0(2) N(4)-Cd(2)-N(7) 92.95(18) N(5)-Cd(2)-N(7) 91.68(16)
    2
    Ni(1)-O(1) 0.210 0(4) Ni(1)-O(5) 0.204 0(3) Ni(1)-N(2) 0.212 4(4)
    Ni(1)-N(3) 0.213 3(4) Ni(1)-N(4) 0.217 0(4) Ni(1)-N(5) 0.213 1(4)
    Ni(2)-O(4)A 0.203 2(4) Ni(2)-O(6) 0.215 4(3) Ni(2)-O(7) 0.214 7(4)
    Ni(2)-N(1) 0.205 8(4) Ni(2)-N(6) 0.213 6(5) Ni(2)-N(7) 0.214 8(5)
    O(5)-Ni(1)-O(1) 86.47(15) O(5)-Ni(1)-N(2) 88.73(15) O(1)-Ni(1)-N(2) 102.10(16)
    O(5)-Ni(1)-N(5) 98.26(16) O(1)-Ni(1)-N(5) 88.49(16) N(2)-Ni(1)-N(5) 167.69(17)
    N(3)-Ni(1)-O(5) 163.93(15) O(1)-Ni(1)-N(3) 88.01(16) N(3)-Ni(1)-N(2) 77.69(17)
    N(5)-Ni(1)-N(3) 96.67(17) N(4)-Ni(1)-O(5) 96.27(15) O(1)-Ni(1)-N(4) 165.73(16)
    N(2)-Ni(1)-N(4) 91.98(17) N(5)-Ni(1)-N(4) 77.25(17) N(4)-Ni(1)-N(3) 92.78(16)
    O(4)A-Ni(2)-N(1) 97.75(15) O(4)A-Ni(2)-N(6) 160.40(17) N(1)-Ni(2)-N(6) 99.69(17)
    O(4)A-Ni(2)-O(7) 100.94(15) N(1)-Ni(2)-O(7) 76.07(15) N(6)-Ni(2)-O(7) 91.90(16)
    O(4)A-Ni(2)-N(7) 86.65(16) N(1)-Ni(2)-N(7) 175.53(17) N(6)-Ni(2)-N(7) 76.09(18)
    N(7)-Ni(2)-O(7) 102.40(15) O(6)-Ni(2)-O(4)A 92.34(14) N(1)-Ni(2)-O(6) 74.99(14)
    N(6)-Ni(2)-O(6) 83.65(16) O(7)-Ni(2)-O(6) 149.48(14) N(7)-Ni(2)-O(6) 105.72(15)
      Symmetry codes: A: -x+1, y-1/2, -z+3/2 for 1; A: -x+1, y+1/2, -z+1/2 for 2.

    Table 3

    Table 3.  Hydrogen bond parameters of compound 1
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(9)-H(1W)…O(7) 0.085 0.188 2 0.273 1 178.6
    O(9)-H(2W)…O(2)A 0.085 0.212 7 0.297 7 179.4
    O(10)-H(3W)…O(6) 0.085 0.203 8 0.288 8 179.7
    O(10)-H(4W)…O(4)B 0.085 0.200 4 0.285 4 179.3
      Symmetry codes: A: -x+1, y+1/2, -z+3/2; B: -x+1/2, y+1/2, z.

    Table 4

    Table 4.  Hydrogen bond parameters of compound 2
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(9)-H(1W)…O(3)A 0.085 0.19 54 0.280 4 178.8
    O(9)-H(2W)…O(11)B 0.085 0.203 5 0.288 5 179.5
    O(10)-H(3W)…O(8) 0.085 0.200 1 0.285 1 178.9
    O(10)-H(4W)…O(2)B 0.085 0.220 8 0.305 8 179.0
    O(11)-H(5W)…O(8) 0.085 0.201 9 0.286 9 179.0
    O(11)-H(6W)…O(2)B 0.085 0.211 5 0.296 5 179.3
      Symmetry codes: A: x, y+1, z; B: -x+1/2, y+1/2, z.

    CCDC: 1915948, 1; 1915949, 2.

    2.1.1   Structure of {[Cd2(μ3-L)(phen)3]·5H2O}n (1)

    Compounds 1 and 2 are isostructural (Table 1) and the structure of 1 is discussed in detail as an example. Asymmetric unit of 1 comprises two Cd(Ⅱ) centers (Cd1 and Cd2), one μ3-L4- spacer, three phen moieties, and five lattice water molecules (Fig. 1). The six-coordinated Cd1 atom adopts a distorted octahedral {CdN3O3} geometry, which is populated by one N and two O atoms from one μ3-L4- spacer and a carboxylate O donor from another μ3-L4- ligand, in addition to two phen N donors. The Cd2 center is also six-coordinated with a distorted octahedral {CdN4O2} environment, which is filled by two O atoms of μ3-L4- block and two pairs of phen N donors. The lengths of the Cd-O and Cd-N bonds are 0.220 6(4)~0.243 6(4) and 0.228 7(4)~0.239 4(5) nm, respectively, which are within the normal values for related Cd(Ⅱ) derivat- ives[11, 15, 23]. The L4- block acts as a hexadentate μ3-bridging ligand (Scheme 1), in which the four carboxy-late groups adopt different monodentate or bidentate bridging modes. The dihedral angle of two aromatic rings in the L4- ligand is 62.53°. The carboxylate groups of L4- blocks bridge alternately adjacent Cd(Ⅱ) atoms to form a 1D chain (Fig. 2). These chains are further extended into a 2D supramolecular network via the O-H…O hydrogen-bonding interactions (Fig. 3 and Table 3).

    Figure 1

    Figure 1.  Drawing of the asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules are omitted for clarity; Symmetry code: A:-x+1, y-1/2, -z+3/2

    Scheme 1

    Scheme 1.  Coordination mode of L4- ligand in compound 1

    Figure 2

    Figure 2.  View of 1D chain in compound 1 along a axis

    Phen ligands are omitted for clarity; Symmetry codes: A:-x+1, y-1/2, -z+3/2; B:-x+1, y+1/2, -z+3/2

    Figure 3

    Figure 3.  Perspective of 2D supramolecular network parallel to ab plane in 1

    Phen ligands are omitted for clarity; Dotted lines present the H-bonds; symmetry codes: A:-x+1, y+1/2, -z+3/2; B:-x+1, y-1/2, -z+3/2; C: -x+1/2, y+1/2, z; D: -x+1/2, y-1/2, z; E: x+1/2, y, -z+3/2

    To determine the thermal stability of polymers 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 4, TGA curve of compound 1 showed that there was a loss of five lattice water molecules between 30 and 130 ℃ (Obsd. 7.4%; Calcd. 7.6%); further heating above 312 ℃ led to a decomposition of the dehydrated sample. Compound 2 lost its five lattice water molecules in a range of 30~160 ℃ (Obsd. 8.2%; Calcd. 8.4%), followed by the decomposition at 294 ℃.

    Figure 4

    Figure 4.  TGA curves of compounds 1 and 2

    Solid-state emission spectra of H4L and cadmium(Ⅱ) compound 1 were measured at room temperature (Fig. 5). The spectrum of H4L revealed a weak emission with a maximum at 366 nm (λex=325 nm). In comparison with H4L, the coordination compound 1 exhibited more extensive emission with a maximum at 358 nm (λex=315 nm). These emissions correspond to intraligand π-π* or n-π* transition of H4L[11, 13, 15]. Enhancement of the luminescence in 1 compared to H4L can be explained by the coordination of ligands to Cd(Ⅱ); the coordination can augment a rigidity of ligands and reduce an energy loss due to radiationless decay[13, 15, 23].

    Figure 5

    Figure 5.  Solid-state emission spectra of H4L and compound 1 at room temperature

    Variable-temperature magnetic susceptibility measurements were performed on powder samples of 2 in the 2~300 K temperature range (Fig. 6). For 2, as shown in Fig. 6, the χMT value at room temperature was 2.03 cm3·mol-1·K, which is close to the value (2.00 cm3·mol-1·K) for two magnetically isolated high-spin Ni(Ⅱ) ion (S=1, g=2.0). The χMT values increased slowly on lowering the temperature until about 48 K, and then increased quickly to 3.42 cm3·mol-1·K at 2.0 K. Between 2 and 300 K, the magnetic susceptibilities can be fitted to the Curie-Weiss law with C=1.99 cm3·mol-1·K and θ=5.76 K. These results indicate a ferro-magnetic interaction between the adjacent Ni(Ⅱ) centers in compound 2.

    Figure 6

    Figure 6.  Temperature dependence of χMT (○) and 1/χM(□) for compound 2

    Red line represents the best fit to the equation in the text, and the blue line shows the Curie-Weiss fitting

    The magnetic data for 2 can be fitted with the expression for a dinuclear Ni(Ⅱ) unit[24]:

    $ {\chi _{{\rm{M}}, {\rm{ dimer }}}} = \frac{{{N_{\rm{A}}}{g^2}\mu _{\rm{B}}^2}}{{9kT}}\frac{{5 + \exp ( - 5.75x)}}{{5 + 3\exp ( - 5.75x) + \exp ( - 8.63x)}} $

    where x=J/(kT). The best fit for the experimentally observed data was obtained with a J value of 2.48 cm-1, which indicates reasonable ferromagnetic interactions.

    According to the chain structure of 2 (Fig. 2), adjacent Ni(Ⅱ) centers within the Ni2 unit possess a single type of the magnetic exchange path, namely through one syn-anti carboxylate bridge, which explains a ferromagnetic exchange observed in this compound. The syn-anti carboxylate bridging moiety has been observed in some Ni(Ⅱ) complexes with ferromagnetic interactions reported elsewhere[25-28].

    In summary, we have successfully synthesized and characterized two new cadmium/nickel coordination polymers by using one biphenyl-type tetracarboxylic acid as bridging ligand under hydrothermal condition. Two polymers all feature 1D chain. Besides, the magnetic (for 2) and luminescent (for 1) properties were also investigated and discussed. The results show that such tetracarboxylic acid can be used as a versatile multifunctional building block toward the generation of new coordination polymers.


    1. [1]

      Cui Y J, Yue Y F, Qian G D, et al. Chem. Rev., 2012, 112:1126-1162 doi: 10.1021/cr200101d

    2. [2]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38:1477-1504 doi: 10.1039/b802426j

    3. [3]

      Loukopoulos E, Kostakis G E. J. Coord. Chem., 2018, 71:371-410 doi: 10.1080/00958972.2018.1439163

    4. [4]

      Zheng X D, Lu T B. CrystEngComm, 2010, 12:324-336 doi: 10.1039/B911991D

    5. [5]

      Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:2403-2412 doi: 10.1021/acs.inorgchem.8b02926

    6. [6]

      Chen Q, Xue W, Lin J B, et al. Chem. Eur. J., 2016, 22:12088-12094 doi: 10.1002/chem.201601826

    7. [7]

      Dey A, Garai A, Gude V, et al. Cryst. Growth Des., 2018, 18:6070-6077 doi: 10.1021/acs.cgd.8b00924

    8. [8]

      Zhao X, Wang Y X, Li D S, et al. Adv. Mater., 2018, 30:1705189 doi: 10.1002/adma.201705189

    9. [9]

      Pal S, Pal T K, Bharadwaj P K. CrystEngComm, 2016, 18:1825-1831 doi: 10.1039/C5CE02540K

    10. [10]

      Zhang L N, Zhang C, Zhang B, et al. CrystEngComm, 2015, 17:2837-2846 doi: 10.1039/C5CE00263J

    11. [11]

      Gu J Z, Gao Z Q, T ang Y. Cryst. Growth Des., 2012, 12:3312-3323 doi: 10.1021/cg300442b

    12. [12]

      Du M, Li C P, Liu C S, et al. Coord. Chem. Soc., 2013, 257:1282-1305 doi: 10.1016/j.ccr.2012.10.002

    13. [13]

      Gu J Z, Cui Y H, Liang X X, et al. Cryst. Growth Des., 2016, 16:4658-4670 doi: 10.1021/acs.cgd.6b00735

    14. [14]

      邹训重, 吴疆, 顾金忠, 等.无机化学学报, 2019, 35(9):1705-1711 http://www.cqvip.com/QK/93659X/20186/675513975.htmlZOU Xun-Zhong, WU Jiang, GU Jin-Zhong, et al. Chinese J. Inorg. Chem., 2019, 35(9):1705-1711 http://www.cqvip.com/QK/93659X/20186/675513975.html

    15. [15]

      Gu J Z, Cai Y, Qian Z Y, et al. Dalton Trans., 2018, 47:7431-7444 doi: 10.1039/C8DT01299G

    16. [16]

      Peng Y W, Wu R J, Liu M, et al. Cryst. Growth Des., 2019, 19:1322-1328 doi: 10.1021/acs.cgd.8b01709

    17. [17]

      顾文君, 顾金忠.无机化学学报, 2017, 33(2):227-236 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201702004.htmGU Wen-Jun, GU Jin-Zhong. Chinese J. Inorg. Chem., 2017, 33(2):227-236 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201702004.htm

    18. [18]

      赵素琴, 顾金忠.无机化学学报, 2016, 32(9):1611-1618 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201605016.htmZHAO Su-Qin, GU Jin-Zhong. Chinese J. Inorg. Chem., 2016, 32(9):1611-1618 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201605016.htm

    19. [19]

      Gu J Z, Wen M, Liang X X. Crystals, 2018, 8:83 doi: 10.3390/cryst8020083

    20. [20]

      You L X, Wang S J, Xiong G, et al. Dalton Trans., 2014, 43:17385-17394 doi: 10.1039/C4DT02517B

    21. [21]

      Spek A L. Acta Crystallogr. Sect. C:Struct. Chem., 2015, C71:9-18 http://www.ncbi.nlm.nih.gov/pubmed/25567569

    22. [22]

      Van de Sluis P, Spek A L. Acta Crystallogr. Sect. A:Found. Crystallogr., 1990, A46:194-201 http://www.researchgate.net/publication/244638370_Structure_of_calcium_acetate_monohydrate_Ca(C2H3O2)2.H2O?ev=prf_cit

    23. [23]

      Gu J Z, Cai Y, Wen M, Dalton Trans., 2018, 47:14327-14339 doi: 10.1039/C8DT02467G

    24. [24]

      Banerjee A, Mahata P, Natarajan S. Eur. J. Inorg. Chem., 2008:3501-3514 http://www.researchgate.net/publication/43075750_The_Use_of_Liquid-Liquid_Interface_Biphasic_for_the_Preparation_of_Benzenetricarboxylate_Complexes_of_Cobalt_and_Nickel

    25. [25]

      Su F, Lu L P, Feng S S, et al. Dalton Trans., 2015, 44:7213-7222 doi: 10.1039/C5DT00412H

    26. [26]

      Xie F T, Duan L M, Xu J Q, et al. Eur. J. Inorg. Chem., 2004:4375-4379 http://www.researchgate.net/publication/243895469_One_and_Three-Dimensional_Coordination_Polymers_Containing_Organic_Ligands_Produced_Through_in_situ_Hydrothermal_Reactions

    27. [27]

      Mukherjee P S, Konar S, Zangrando E, et al. Inorg. Chem., 2003, 42:2695-2703 doi: 10.1021/ic026150n

    28. [28]

      Du M, Bu X H, Guo Y M, et al. Chem. Commun., 2002:1478-1479 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM12230394

  • Figure 1  Drawing of the asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules are omitted for clarity; Symmetry code: A:-x+1, y-1/2, -z+3/2

    Scheme 1  Coordination mode of L4- ligand in compound 1

    Figure 2  View of 1D chain in compound 1 along a axis

    Phen ligands are omitted for clarity; Symmetry codes: A:-x+1, y-1/2, -z+3/2; B:-x+1, y+1/2, -z+3/2

    Figure 3  Perspective of 2D supramolecular network parallel to ab plane in 1

    Phen ligands are omitted for clarity; Dotted lines present the H-bonds; symmetry codes: A:-x+1, y+1/2, -z+3/2; B:-x+1, y-1/2, -z+3/2; C: -x+1/2, y+1/2, z; D: -x+1/2, y-1/2, z; E: x+1/2, y, -z+3/2

    Figure 4  TGA curves of compounds 1 and 2

    Figure 5  Solid-state emission spectra of H4L and compound 1 at room temperature

    Figure 6  Temperature dependence of χMT (○) and 1/χM(□) for compound 2

    Red line represents the best fit to the equation in the text, and the blue line shows the Curie-Weiss fitting

    Table 1.  Crystal data for compounds 1 and 2

    Compound 1 2
    Chemical formula C51H39Cd2N7O13 C51H39Ni2N7O13
    Molecular weight 1 182.72 1 075.31
    Crystal system Orthorhombic Orthorhombic
    Space group Pbca Pbca
    a/nm 1.845 88(7) 1.809 05(5)
    b/nm 1.691 95(6) 1.676 82(4)
    c/nm 3.012 97(11) 3.016 46(8)
    V/nm3 9.409 9(6) 9.150 3(4)
    Z 8 8
    F(000) 4 512 4 272
    θ range for data collection/(°) 3.336~25.049 3.816~ 69.987
    Limiting indices -12 ≤ h ≤ 21, -19 ≤ k ≤ 20, -35 ≤ l ≤ 35 -20 ≤ h ≤ 21, -20 ≤ k ≤ 13, -36 ≤ l ≤ 36
    Reflection collected, unique (Rint) 35 201, 8 304 (0.087 9) 36 483, 8 579 (0.099 0)
    Dc/(g·cm-3) 1.593 1.509
    μ/mm-1 0.972 1.633
    Data, restraint, parameter 8 304, 0, 631 8 579, 0, 640
    Goodness-of-fit on F2 1.142 1.054
    Final R indices [I≥2σ(I)] R1, wR2 0.05 63, 0.097 6 0.075 3, 0.157 5
    R indices (all data) R1, wR2 0.078 1, 0.092 4 0.125 2, 0.183 5
    Largest diff. peak and hole/(e·nm-3) 1 079 and -464 359 and -666
    下载: 导出CSV

    Table 2.  Selected bond distances (nm) and bond angles (°) for compounds 1 and 2

    1
    Cd(1)-O(1) 0.243 6(4) Cd(1)-O(3) 0.232 7(4) Cd(1)-O(8)A 0.220 6(4)
    Cd(1)-N(1) 0.228 7(4) Cd(1)-N(2) 0.232 7(5) Cd(1)-N(3) 0.238 6(5)
    Cd(2)-O(2) 0.226 4(4) Cd(2)-O(5) 0.227 4(4) Cd(2)-N(4) 0.234 3(5)
    Cd(2)-N(5) 0.235 8(5) Cd(2)-N(6) 0.229 4(5) Cd(2)-N(7) 0.239 4(5)
    O(8)A-Cd(1)-N(1) 104.30(15) O(8)A-Cd(1)-N(2) 148.44(18) N(1)-Cd(1)-N(2) 103.70(18)
    O(8)A-Cd(1)-O(3) 105.04(15) N(1)-Cd(1)-O(3) 71.99(15) N(2)-Cd(1)-O(3) 97.21(17)
    O(8)A-Cd(1)-N(3) 81.51(16) N(1)-Cd(1)-N(3) 173.90(17) N(2)-Cd(1)-N(3) 70.21(19)
    O(3)-Cd(1)-N(3) 108.59(16) O(8)A-Cd(1)-O(1) 92.88(15) N(1)-Cd(1)-O(1) 67.87(15)
    N(2)-Cd(1)-O(1) 84.41(16) O(3)-Cd(1)-O(1) 138.96(14) N(3)-Cd(1)-O(1) 110.42(15)
    O(2)-Cd(2)-O(5) 86.00(15) O(2)-Cd(2)-N(6) 102.27(16) O(5)-Cd(2)-N(6) 90.42(18)
    O(2)-Cd(2)-N(4) 92.71(16) O(5)-Cd(2)-N(4) 105.03(16) N(6)-Cd(2)-N(4) 159.25(18)
    O(2)-Cd(2)-N(5) 161.74(15) O(5)-Cd(2)-N(5) 89.59(17) N(6)-Cd(2)-N(5) 95.46(18)
    N(4)-Cd(2)-N(5) 71.34(18) O(2)-Cd(2)-N(7) 98.13(15) O(5)-Cd(2)-N(7) 161.38(17)
    N(6)-Cd(2)-N(7) 71.0(2) N(4)-Cd(2)-N(7) 92.95(18) N(5)-Cd(2)-N(7) 91.68(16)
    2
    Ni(1)-O(1) 0.210 0(4) Ni(1)-O(5) 0.204 0(3) Ni(1)-N(2) 0.212 4(4)
    Ni(1)-N(3) 0.213 3(4) Ni(1)-N(4) 0.217 0(4) Ni(1)-N(5) 0.213 1(4)
    Ni(2)-O(4)A 0.203 2(4) Ni(2)-O(6) 0.215 4(3) Ni(2)-O(7) 0.214 7(4)
    Ni(2)-N(1) 0.205 8(4) Ni(2)-N(6) 0.213 6(5) Ni(2)-N(7) 0.214 8(5)
    O(5)-Ni(1)-O(1) 86.47(15) O(5)-Ni(1)-N(2) 88.73(15) O(1)-Ni(1)-N(2) 102.10(16)
    O(5)-Ni(1)-N(5) 98.26(16) O(1)-Ni(1)-N(5) 88.49(16) N(2)-Ni(1)-N(5) 167.69(17)
    N(3)-Ni(1)-O(5) 163.93(15) O(1)-Ni(1)-N(3) 88.01(16) N(3)-Ni(1)-N(2) 77.69(17)
    N(5)-Ni(1)-N(3) 96.67(17) N(4)-Ni(1)-O(5) 96.27(15) O(1)-Ni(1)-N(4) 165.73(16)
    N(2)-Ni(1)-N(4) 91.98(17) N(5)-Ni(1)-N(4) 77.25(17) N(4)-Ni(1)-N(3) 92.78(16)
    O(4)A-Ni(2)-N(1) 97.75(15) O(4)A-Ni(2)-N(6) 160.40(17) N(1)-Ni(2)-N(6) 99.69(17)
    O(4)A-Ni(2)-O(7) 100.94(15) N(1)-Ni(2)-O(7) 76.07(15) N(6)-Ni(2)-O(7) 91.90(16)
    O(4)A-Ni(2)-N(7) 86.65(16) N(1)-Ni(2)-N(7) 175.53(17) N(6)-Ni(2)-N(7) 76.09(18)
    N(7)-Ni(2)-O(7) 102.40(15) O(6)-Ni(2)-O(4)A 92.34(14) N(1)-Ni(2)-O(6) 74.99(14)
    N(6)-Ni(2)-O(6) 83.65(16) O(7)-Ni(2)-O(6) 149.48(14) N(7)-Ni(2)-O(6) 105.72(15)
      Symmetry codes: A: -x+1, y-1/2, -z+3/2 for 1; A: -x+1, y+1/2, -z+1/2 for 2.
    下载: 导出CSV

    Table 3.  Hydrogen bond parameters of compound 1

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(9)-H(1W)…O(7) 0.085 0.188 2 0.273 1 178.6
    O(9)-H(2W)…O(2)A 0.085 0.212 7 0.297 7 179.4
    O(10)-H(3W)…O(6) 0.085 0.203 8 0.288 8 179.7
    O(10)-H(4W)…O(4)B 0.085 0.200 4 0.285 4 179.3
      Symmetry codes: A: -x+1, y+1/2, -z+3/2; B: -x+1/2, y+1/2, z.
    下载: 导出CSV

    Table 4.  Hydrogen bond parameters of compound 2

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    O(9)-H(1W)…O(3)A 0.085 0.19 54 0.280 4 178.8
    O(9)-H(2W)…O(11)B 0.085 0.203 5 0.288 5 179.5
    O(10)-H(3W)…O(8) 0.085 0.200 1 0.285 1 178.9
    O(10)-H(4W)…O(2)B 0.085 0.220 8 0.305 8 179.0
    O(11)-H(5W)…O(8) 0.085 0.201 9 0.286 9 179.0
    O(11)-H(6W)…O(2)B 0.085 0.211 5 0.296 5 179.3
      Symmetry codes: A: x, y+1, z; B: -x+1/2, y+1/2, z.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  318
  • HTML全文浏览量:  29
文章相关
  • 发布日期:  2020-01-10
  • 收稿日期:  2019-05-15
  • 修回日期:  2019-09-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章