Citation: ZHU Ning, PAN Xun, LIN Sen, YANG Yu-Ping, XIN Xiu-Lan, LI Zhong-Feng, ZHANG Fan, JIN Qiong-Hua. Syntheses, Structures and Terahertz Time-Domain Spectroscopy of Two Diimine-Copper(Ⅰ)-Phosphine Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(1): 183-191. doi: 10.11862/CJIC.2020.015 shu

Syntheses, Structures and Terahertz Time-Domain Spectroscopy of Two Diimine-Copper(Ⅰ)-Phosphine Complexes

Figures(11)

  • Herein, two novel copper(Ⅰ) complexes, [Cu(PPh3)2(dppz)]Ⅰ (1) and[Cu2(dppm)2(dppz)2]Cl2 (2) (PPh3=triphenylphosphine, dppz=dipyrido[3, 2-a:2', 3'-c]phenazine, dppm=bis(diphenylphosphino) methane) have been synthesized, and the characterization of the complexes was carried out through single-crystal X-ray diffraction, elemental analysis, IR, 1H/31P NMR spectroscopy, fluorescence spectra and THz time domain spectroscopy (THz-TDS). The results show that 1 is a mononuclear complex. The central Cu(Ⅰ) builds a distorted tetrahedral geometry by coordinating with two phosphine ligands (PPh3) and one chelating N-donor ligand (dppz). Different from 1, 2 exhibits a dinuclear structure which was obtained by the reaction of CuCl and dppm with dppz in 1:1:1 molar ratio, where the diphosphine ligand (dppm) was utilized as a bridging ligand coordinating to two copper(Ⅰ) atoms. The luminescent spectra show that the emission mechanism belongs to metal-to-ligand charge transfer (MLCT). At the same time, the terahertz (THz) time-domain spectroscopy was used to represent these two complexes as well as the corresponding ligands.
  • 加载中
    1. [1]

      dos Santos C M G, Harte A J, Quinn S J, et al. Coord. Chem. Rev., 2008, 252:2512-2527  doi: 10.1016/j.ccr.2008.07.018

    2. [2]

      Hu X, Wang F Y, Peng Q Q, et al. RSC Adv., 2019, 9:13048-13053  doi: 10.1039/C9RA01748H

    3. [3]

      Farahani Y D, Safarifard V. J. Solid State Chem., 2019, 275:131-140  doi: 10.1016/j.jssc.2019.04.018

    4. [4]

      Jana M K, Janke S M, Dirkes D J, et al. J. Am. Chem. Soc., 2019, 141:7955-7964  doi: 10.1021/jacs.9b02909

    5. [5]

      Hayashi T, Kobayashi A, Ohara H, et al. Inorg. Chem., 2019, 54:8905-8913
       

    6. [6]

      Huang X S, Hu M, Zhao X H, et al. Org. Lett., 2019, 21:3382-3386  doi: 10.1021/acs.orglett.9b01130

    7. [7]

      Cao L D, Zhang H R, Zhou Z L, et al. Nanoscale, 2018, 10:20354-20365  doi: 10.1039/C8NR04626C

    8. [8]

      Taha Z A, Ajlouni A M, Al Momani W. J. Lumin., 2012, 132:2832-2841  doi: 10.1016/j.jlumin.2012.05.041

    9. [9]

      Gao H, Zhao X, Chen S J. Molecules, 2018, 23:419/1-419/20
       

    10. [10]

      Zhang D D, Duan L. J. Phys. Chem. Lett., 2019, 10:2528-2537  doi: 10.1021/acs.jpclett.9b00526

    11. [11]

      Tsuboyama A, Kuge K, Furugori M, et al. Inorg. Chem., 2007, 46:1992-2001  doi: 10.1021/ic0608086

    12. [12]

      Xiao L, Chen Z, Qu B, et al. Adv. Mater., 2011, 23:926-952  doi: 10.1002/adma.201003128

    13. [13]

      Hashimoto M, Igawa S, Yashima M, et al. J. Am. Chem. Soc., 2011, 133:10348-10351  doi: 10.1021/ja202965y

    14. [14]

      Minaev B, Jansson E, Agren H, et al. J. Chem. Phys., 2006, 125:234704  doi: 10.1063/1.2388263

    15. [15]

      Helander M G, Wang Z B, Qiu J, et al. Science, 2011, 332:944-947  doi: 10.1126/science.1202992

    16. [16]

      Hamze R, Peltier J L, Sylvinson D, et al. Science, 2019, 363:601-606  doi: 10.1126/science.aav2865

    17. [17]

      Brunner F, Martinez-Sarti L, Keller S, et al. Dalton Trans., 2016, 45:15180-15192  doi: 10.1039/C6DT02665F

    18. [18]

      Linfoot C L, Leitl M J, Richardson P, et al. Inorg. Chem., 2014, 53:10854-10861  doi: 10.1021/ic500889s

    19. [19]

      Adachi C, Baldo M A, Thompson M E, et al. J. Appl. Phys., 2001, 90:5048-5051  doi: 10.1063/1.1409582

    20. [20]

      Tanaka D, Agata Y, Takeda T, et al. Jpn. J. Appl. Phys., 2007, 46:L117-L119  doi: 10.1143/JJAP.46.L117

    21. [21]

      Zhang Y, Schulz M, Waechtler M, et al. Coord. Chem. Rev., 2018, 356:127-146  doi: 10.1016/j.ccr.2017.10.016

    22. [22]

      Kuang S M, Cuttell D G, McMillin D R. Inorg. Chem., 2002, 41:3313-3322  doi: 10.1021/ic0201809

    23. [23]

      Zhang Q S, Zhou Q G, Cheng Y X, et al. Adv. Mater., 2004, 16:432-436  doi: 10.1002/adma.200306414

    24. [24]

      Bergmann L, Friedrichs J, Mydlak M, et al. Chem. Commun., 2013, 49:6501-6503  doi: 10.1039/c3cc42280a

    25. [25]

      Chen X L, Yu R M, Zhang Q K, et al. Chem. Mater., 2013, 25:3910-3920  doi: 10.1021/cm4024309

    26. [26]

      Mara M W, Jackson N E, Huang J, et al. J. Phys. Chem. B, 2013, 117:1921-1931  doi: 10.1021/jp311643t

    27. [27]

      Garakyaraghi S, Danilov E O, McCusker C E, et al. J. Phys. Chem. A, 2015, 119:3181-3193  doi: 10.1021/acs.jpca.5b00901

    28. [28]

      McCusker C E, Castellano F N. Inorg. Chem., 2013, 52:8114-8120http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23789625

    29. [29]

      Green O, Gandhi B A, Burstyn J N. Inorg. Chem., 2009, 48:5704-5714http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19496591

    30. [30]

      Kuang X N, Lin S, Liu J M, et al. Polyhedron, 2019, 165:51-62

    31. [31]

      PAN Xun, KUANG Xiao-Nan, ZHU Ning, et al. Chinese J. Inorg. Chem., 2019, 35:361-368

    32. [32]

      Zhang Y R, Yu X, Lin S, et al. Polyhedron, 2017, 138:46-56
       

    33. [33]

      Wang Y, Kuang X N, Cui Y Z. Polyhedron, 2018, 155:135-143
       

    34. [34]

      Sheldrick G M. SHELXTL NT Ver.5.1, University of Göttingen, Germany, 1997.

    35. [35]

      Sheldrick G M. SHELXS-97 and SHELXL-97, Madison, WI, USA, 1997.

    36. [36]

      Zhang L M, Yue S M, Li B, et al. Inorg. Chim. Acta, 2012, 384:225-232
       

    37. [37]

      Villarreal W, Colina-Vegas L, Visbal G, et al. Inorg. Chem., 2017, 56:3781-3793
       

    38. [38]

      Chen H F, Hung W Y, Chen S W, et al. Inorg. Chem., 2012, 51:12114-12121

    39. [39]

      Tsukuda T, Nakamura A, Arai T, et al. Bull. Chem. Soc. Jpn., 2006, 79:288-290  doi: 10.1039/b608641a

    40. [40]

      Ruina Y, Kunhua L, Yimin H, et al. Polyhedron, 1997, 16:4033-4038  doi: 10.1023/A:1018412524042

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    3. [3]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    4. [4]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    14. [14]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    15. [15]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    16. [16]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    20. [20]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

Metrics
  • PDF Downloads(1)
  • Abstract views(534)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return