Syntheses, Crystal Structures and Magnetic Properties of Two Copper(Ⅱ) Coordination Compounds Based on 5-Bromoisophthalic Acid and 2, 2'-Bipyridine

Yu LI Xun-Zhong ZOU An-Sheng FENG Zhen-Yu ZHAO

Citation:  LI Yu, ZOU Xun-Zhong, FENG An-Sheng, ZHAO Zhen-Yu. Syntheses, Crystal Structures and Magnetic Properties of Two Copper(Ⅱ) Coordination Compounds Based on 5-Bromoisophthalic Acid and 2, 2'-Bipyridine[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 345-351. doi: 10.11862/CJIC.2020.002 shu

由5-溴间苯二甲酸和2,2'-联吡啶构筑的两个铜(Ⅱ)配合物的合成、晶体结构及磁性质

    通讯作者: 黎彧, liyuletter@163.com
    赵振宇, yxpzzy01@163.com
  • 基金项目:

    广东轻院科技成果培育项目 KJPY2018-010

    广东省大学生科技创新培育专项 pdjh2019b0690

    广东省自然科学基金 2016A030313761

    广东省高等职业院校珠江学者岗位计划资助项目(2015, 2018), 广东省自然科学基金(No.2016A030313761), 广东轻院珠江学者人才类项目(No.RC2015-001), 生物无机与合成化学教育部重点实验室开放基金(2016), 广东省高校创新团队项目(No.2017GKCXTD001), 广州市科技计划项目(No.201904010381), 深圳市科技计划项目(No.JCYJ20170817112445033, GGFW2017041209483817), 广东省大学生科技创新培育专项(No.pdjh2019b0690), 广东轻院科技成果培育项目(No.KJPY2018-010)和广东轻院优秀青年基金项目(No.QN2018-007)资助

    广东轻院珠江学者人才类项目 RC2015-001

    广东省高校创新团队项目 2017GKCXTD001

    广东省高等职业院校珠江学者岗位计划资助项目 2015

    广东轻院优秀青年基金项目 QN2018-007

    广州市科技计划项目 201904010381

    深圳市科技计划项目 JCYJ20170817112445033

    生物无机与合成化学教育部重点实验室开放基金 2016

    广东省高等职业院校珠江学者岗位计划资助项目 2018

    深圳市科技计划项目 GGFW2017041209483817

摘要: 采用水热方法,在120℃温度下选用5-溴间苯二甲酸(H2BIPA)和2,2'-联吡啶(2,2'-bipy)与CuCl2·2H2O分别在NaOH与H2BIPA的物质的量之比为2:1和3:1时反应,得到了1个具有零维单核铜结构的配合物[Cu(BIPA)(2,2'-bipy)(H2O)2]·H2O(1)和1个一维链状配位聚合物[Cu3μ3-BIPA)2μ-OH)2(2,2'-bipy)2]n2),并对其结构和磁性质进行了研究。结构分析结果表明2个配合物均属于单斜晶系,分别为P21/cP21/n空间群。配合物1具有零维单核铜结构,而且这些单核铜单元通过O-H…O氢键作用进一步形成了二维层。而配合物2具有基于三核铜单元的一维链结构。这些一维链通过链间的π-π相互作用进一步形成了二维层。2个配合物的结构差异是由反应中NaOH与H2BIPA的物质的量之比不同造成的。研究表明,配合物2的三核铜单元中相邻铜离子间存在反铁磁相互作用。

English

  • In recent years, great interest has been focused on the design and hydrothermal syntheses of functional coordination polymers owing to their intriguing architectures and topologies, as well as potential applications in catalysis, magnetism, luminescence and gas absorption[1-10]. Up to now, a large numbers of coordination polymers have been obtained by hydrothermal methods, which are optimal for crystal growth[1, 3-4, 11-13]. The mechanism of the complicated reactions under hydrothermal methods remain unclear, which depends directly on the interplay of starting materials, pH value, template, and reaction temperature[14-18].

    In this regard, the selection of organic ligands is one of the most important aspects. Among a wide variety of organic ligands, various types of aromatic polycarboxylic acids have been proved to be versatile and efficient candidates for constructing diverse coordination polymers due to their rich coordination chemistry, tunable degree of deprotonation, and ability to act as H-bond acceptors and donors[15-16, 18-22].

    On the basis of the above account, we selected 5-bromoisophthalic acid (H2BIPA) and investigated the influence of the reaction conditions on the structures of coordination polymers under hydrothermal conditions.

    Herein, we report the syntheses, crystal structures, and magnetic properties of two Cu(Ⅱ) coordination compounds constructed from 5-bromoisophthalic acid ligand.

    All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1. Magnetic susceptibility data were collected in a temperature range of 2~300 K with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.

    A mixture of CuCl2·2H2O (0.017 g, 0.10 mmol), H2BIPA (0.024 g, 0.10 mmol), 2, 2′-bipyridine (2, 2′-bipy, 0.016 g, 0.1 mmol), NaOH (0.008 g, 0.20 mmol) and H2O (8 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 120 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Blue block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 58% (based on H2BIPA). Anal. Calcd. for C18H17BrCuN2O7(%): C 41.83, H 3.32, N 5.42; Found(%): C 42.05, H 3.34, N 4.39. IR (KBr, cm-1): 3 444w, 3 238m, 1 593s, 1 543s, 1 476w, 1 420m, 1 354s, 1 248w, 1 174w, 1 091w, 1 063w, 1 030w, 901w, 763m, 724m, 661w, 594w, 546w.

    Synthesis of 2 was similar to 1 except using a different amount of NaOH (0.012 g, 0.30 mmol). Blue block-shaped crystals of 2 were isolated manually, and washed with distilled water. Yield: 38 % (based on H2BIPA). Anal. Calcd. for C36H24Br2Cu3N4O10(%): C 42.26, H 2.36, N 5.48; Found(%): C 42.03, H 2.35, N 5.51. IR (KBr, cm-1): 3 423w, 3 055w, 1 627m, 1 604s, 1 576m, 1 555m, 1 494w, 1 427w, 1 370m, 1 326s, 1 248 w, 1 158w, 1 119w, 1 086w, 1 024w, 886w, 767m, 728m, 657w, 634w, 546w. The compounds are insoluble in water and common organic solvents, such as methanol, ethanol, acetone and DMF.

    Two single crystals with dimensions of 0.26 mm×0.23 mm×0.22 mm (1) and 0.25 mm×0.18 mm×0.16 mm (2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo radiation (λ=0.071 073 nm). The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[23]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for compounds 1 and 2 are listed in Table 2. Hydrogen bond parameters of compounds 1 and 2 are given in Table 3.

    Table 1

    Table 1.  Crystal data for compounds 1 and 2
    下载: 导出CSV
    Compound 1 2
    Chemical formula C18H17BrCuN2O7 C36H24Br2Cu3N4O10
    Molecular weight 516.78 1 023.03
    Crystal system Monoclinic Monoclinic
    Space group P21/c P21/n
    a / nm 2.062 7(2) 0.985 21(4)
    b / nm 0.783 37(5) 1.741 02(7)
    c / nm 2.374 67(17) 1.030 43(7)
    β / (°) 91.907(7) 99.378(5)
    V / nm3 3.835 0(5) 1.743 84(16)
    Z 8 2
    F(000) 2 072 1 010
    θ range for data collection / (°) 3.286~25.050 3.538~25.044
    Limiting indices -24 ≤ h ≤ 24, -9 ≤ k ≤ 8, -28 ≤ l ≤ 22 -9 ≤ h ≤ 11, -18 ≤ k ≤ 20, -11 ≤ l ≤ 12
    Reflection collected, unique (Rint) 13 849, 6 782 (0.082 2) 5 731, 3 084 (0.033 4)
    Dc / (g·cm-3) 1.790 1.948
    μ / mm-1 3.268 4.172
    Data, restraint, parameter 6 782, 0, 523 3 084, 0, 254
    Goodness-of-fit on F2 1.000 1.048
    Final R indices [I≥2σ(I)] R1, wR2 0.060 8, 0.084 7 0.041 7, 0.093 7
    R indices (all data) R1, wR2 0.116 4, 0.146 7 0.061 8, 0.107 2
    Largest diff. peak and hole / (e·nm-3) 915 and -534 1 234 and -708

    Table 2

    Table 2.  Selected bond lengths (nm) and bond angles (°) for compounds 1 and 2
    下载: 导出CSV
    1
    Cu(1)-O(2) 0.197 1(5) Cu(1)-O(9) 0.197 1(5) Cu(1)-O(10) 0.223 6(5)
    Cu(1)-N(1) 0.200 2(7) Cu(1)-N(2) 0.200 3(6) Cu(2)-O(5) 0.197 2(5)
    Cu(2)-O(11) 0.224 2(4) Cu(2)-O(12) 0.195 7(5) Cu(2)-N(3) 0.202 6(6)
    Cu(2)-N(4) 0.200 7(6)
    O(9)-Cu(1)-O(2) 93.6(2) O(9)-Cu(1)-N(1) 93.3(2) O(2)-Cu(1)-N(1) 168.4(3)
    O(9)-Cu(1)-N(2) 164.4(2) O(2)-Cu(1)-N(2) 90.6(3) N(2)-Cu(1)-N(1) 80.3(3)
    O(9)-Cu(1)-O(10) 90.96(19) O(2)-Cu(1)-O(10) 96.7(2) N(1)-Cu(1)-O(10) 92.5(2)
    N(2)-Cu(1)-O(10) 103.5(2) O(5)-Cu(2)-O(12) 94.0(2) O(12)-Cu(2)-N(4) 165.1(2)
    O(5)-Cu(2)-N(4) 90.0(2) O(12)-Cu(2)-N(3) 93.8(2) O(5)-Cu(2)-N(3) 168.0(2)
    N(4)-Cu(2)-N(3) 80.3(3) O(12)-Cu(2)-O(11) 91.90(19) O(11)-Cu(2)-O(5) 98.40(19)
    N(4)-Cu(2)-O(11) 101.8(2) N(3)-Cu(2)-O(11) 90.4(2)
    2
    Cu(1)-O(1) 0.193 0(3) Cu(1)-O(3)A 0.264 9(4) Cu(1)-O(5) 0.190 2(4)
    Cu(1)-N(1) 0.200 1(4) Cu(1)-N(2) 0.202 2(4) Cu(2)-O(4)A 0.195 2(3)
    Cu(2)-O(4)B 0.195 2(3) Cu(2)-O(5) 0.192 2(4) Cu(2)-O(5)C 0.192 2(4)
    O(5)-Cu(1)-O(1) 97.96(15) O(5)-Cu(1)-N(1) 92.83(16) O(1)-Cu(1)-N(1) 164.80(16)
    O(5)-Cu(1)-N(2) 169.39(16) O(1)-Cu(1)-N(2) 90.64(14) N(1)-Cu(1)-N(2) 79.96(15)
    O(1)-Cu(1)-O(3)A 100.94(15) O(5)-Cu(1)-O(3)A 79.77(14) N(1)-Cu(1)-O(3A) 91.46(15)
    N(2)-Cu(1)-O(3A) 92.57(15) O(5)-Cu(2)-O(4)A 91.76(14) O(5)-Cu(2)-O(4)B 88.24(14)
    Symmetry codes: A: x+1, y, z; B: -x+1, -y, -z+1; C: -x+2, -y, -z+1 for 2.

    Table 3

    Table 3.  Hydrogen bond parameters of compounds 1 and 2
    下载: 导出CSV
    Compound D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1 O(9)-H(1W)…O(1) 0.087 6 0.178 1 0.256 0 147.0
    O(9)-H(2W)…O(7)A 0.087 7 0.181 1 0.266 9 165.3
    O(10)-H(3W)…O(8)A 0.086 8 0.193 7 0.279 8 171.2
    O(10)-H(4W)…O(7)B 0.085 0 0.183 1 0.268 1 179.1
    O(11)-H(5W)…O(4)C 0.086 1 0.197 0 0.269 3 140.9
    O(11)-H(6W)…O(3)D 0.085 0 0.195 9 0.280 9 179.5
    O(12)-H(7W)…O(4)D 0.085 0 0.185 7 0.270 7 179.1
    O(12)-H(8W)…O(6) 0.087 4 0.178 5 0.255 6 145.8
    O(13)-H(9W)…O(8)A 0.085 0 0.204 4 0.289 4 179.1
    O(14)-H(11W)…O(3)E 0.085 0 0.196 8 0.281 6 175.3
    2 O(5)-H(1)…O(2) 0.076 0 0.215 1 0.281 6 146.5
    Symmetry codes: A: -x, y+1/2, -z+1/2; B: x, y+1, z; C: x, y-1, z; D: -x+1, y-1/2, -z+1/2; E: -x+1, y+1/2, -z+1/2 for 1.

    CCDC: 1922559, 1; 1922560, 2.

    2.1.1   [Cu(BIPA)(2, 2′-bipy)(H2O)2]·H2O (1)

    Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the monoclinic space group P21/c. Its asymmetric unit contains two mononuclear copper(Ⅱ) units and two lattice water molecules (Fig. 1). In each [Cu(BIPA)(2, 2′-bipy)(H2O)2] unit, the Cu(Ⅱ) ions are five-coordinated and form a distorted square-pyramidal {CuN2O3} geometry with the τ parameters of 0.066 7 or 0.048 3 (τ=0 or 1 for a regular square-pyramidal or trigonal-bipyramidal geometry, respectively)[24]. It is taken by a carboxylate O atom of BIPA2-, two H2O ligands, and two N donors from the 2, 2′-bipy ligand. The Cu-O bonds (0.195 7(5)~0.224 2(4) nm) and the Cu-N distances (0.200 2(7)~0.202 6(6) nm) agree with literature data[3, 22, 25]. In 1, the BIPA2- moiety acts as a terminal ligand (mode Ⅰ, Scheme 1). Discrete mononuclear copper(Ⅱ) units are assembled, via the O-H…O hydrogen bonds, into a 2D H-bonded sheet (Fig. 2 and Table 3).

    Figure 1

    Figure 1.  Drawing of asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules were omitted for clarity

    Scheme 1

    Scheme 1.  Coordination modes of BIPA2- ligands in compounds 1 and 2

    Figure 2

    Figure 2.  Perspective of 2D sheet in 1

    Dashed lines present the H-bonds

    2.1.2   [Cu3(μ3-BIPA)2(μ-OH)2(2, 2′-bipy)2]n (2)

    The asymmetric unit of 2 consists of two Cu(Ⅱ) ions (Cu1 with full occupancy and Cu2 with half occupancy), one μ3-BIPA2- block, one 2, 2′-bipy ligand, and μ-OH- linker. As shown in Fig. 3, five-coordinated Cu1 atom reveals a distorted square-pyramidal {CuN2O3} geometry with the τ parameters of 0.076 5, filled by two carboxylate O atoms from two individual μ3-BIPA2- blocks, one O atom from the μ-OH- linker, and a pair of N atoms from 2, 2′-bipy ligand. The four-coordinated Cu2 atom shows a distorted {CuN2O2} square-planar geometry, which is taken by two carboxylate O atoms from two different BIPA2- blocks and two O atoms from two individual μ-OH- linkers. The Cu-O lengths range from 0.190 2(4) to 0.264 9(4) nm, whereas the Cu-N lengths vary from 0.200 1(4) to 0.202 2(4) nm; these bonding parameters are comparable to those observed in other Cu(Ⅱ) compounds[3, 22, 25]. In 2, the BIPA2- block acts as a μ3-linker, and its COO- groups are monodentate or bidentate (mode Ⅱ, Scheme 1). The three adjacent Cu(Ⅱ) ions are bridged by means of two carboxylate groups from two different BIPA2- blocks and two μ-OH- linkers, giving rise to a trinuclear copper(Ⅱ) subunit (Fig. 4). In this Cu3 subunit, the Cu1…Cu2 distance is 0.344 1(4) nm. The neig-hboring Cu3 subunits are multiply interlinked by BIPA2- blocks into a 1D chain (Fig. 4), having the shortest distance of 0.985 2 nm between the adjacent trinuclear copper(Ⅱ) subunits. The intrachain (N1/C9-C13 and C2A-C7A, Cg…Cg 0.374 6(2) nm, Symmetry code: A: x+1, y, z) and interchain (N2/C14-C18 and C2B-C7B, Cg…Cg 0.352 1(2) nm, Symmetry code: B: x+1/2, -y+1/2, z+1/2) π-π stacking interactions between adjacent pyridyl planes of the 2, 2′-bipy ligands and the benzene planes of BIPA2- blocks are observed (Fig. 5). The chains are further extended into a 2D sheet by π-π stacking interactions (Fig. 5).

    Figure 3

    Figure 3.  Drawing of asymmetric unit of compound 2 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules were omitted for clarity except H of OH-group; Symmetry codes: A: x+1, y, z; B:-x+1, -y, -z+1; C:-x+2, -y, -z+1

    Figure 4

    Figure 4.  One-dimensional chain viewed along c axis in 2

    Symmetry codes: A:-x+2, -y, -z; B: x-1, y, z; C: -x+1, -y, -z+1; D: x+1, y, z; E: -x+3, -y, -z+1

    Figure 5

    Figure 5.  Two-dimensional sheet viewed along c axis in 2

    Dashed lines present the π-π stacking interactions

    To determine the thermal stability of compounds 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 6, compound 1 lost its one lattice and two coordinated water molecules in a range of 43~122 ℃ (Obsd. 10.1%; Calcd. 10.4%), followed by the decomposition at 234 ℃. The TGA curve of 2 reveals that compound 2 was stable up to 241 ℃, then was decomposed upon further heating.

    Figure 6

    Figure 6.  TGA curves of compounds 1 and 2

    Variable-temperature magnetic susceptibility studies were carried out on powder sample of 2 in a temperature range of 2~300 K (Fig. 7). The χMT value at 300 K was 1.20 cm3·mol-1·K, which is slightly higher than the value (1.125 cm3·mol-1·K) expected for three magnetically isolated Cu(Ⅱ) centers (SCu=1/2, g=2.0). Upon cooling, the χMT value decreased to reach a plateau around 11~7 K with χMT value of 0.608~0.598 cm3·mol-1·K, and finally went down to 0.406 cm3·mol-1·K at 2 K. The plateau corresponds to the ground state (S=1/2). In the 15~300 K interval, the χM-1 vs T plot for 2 obeys the Curie-Weiss law with a Weiss contant θ of -25.3 K and a Curie constant C of 1.26 cm3·mol-1·K. Although the separation between the adjacent Cu3 subunits are somewhat longer, the magnetic exchange coupling mediated by spin-polarization mechanism through the intrachain and interchain π-π stacking interactions[26-28]. Because the magnetic exchange coupling through π-π stacking interactions is assumed to be weaker than the intratrinuclear interactions, the negative value of θ and the decrease in χMT should be attributed to the overall antiferromagnetic coupling between the Cu(Ⅱ) ions within the Cu3 subunit.

    Figure 7

    Figure 7.  Temperature dependence of χMT (○) and 1/χM(□) vs T for compound 2

    Red curve represents the best fit to the equations in the text, and the blue line shows the Curie-Weiss fitting

    The spin Hamiltonian appropriate for describing the magnetic properties of an isolated linear trinuclear system is given in Eq.(1):

    $ {H_{\exp }} = - 2J\left( {{S_1}{S_2} + {S_2}{S_3}} \right) - 2J'\left( {{S_1}{S_3}} \right) $

    (1)

    Where J denotes the exchange parameter between the central and terminal copper(Ⅱ) ions, and J′ is assumed to be zero since the distance between the two terminal Cu(Ⅱ) ions is so large (0.688 3 nm). The magnetic properties were analyzed using Eq.(2), derived from Eq.(1) for a linear trinuclear model with S=1/2[29]:

    $ {\chi _{\rm{M}}} = \frac{{N{g^2}{\beta ^2}}}{{3k\left( {T - \theta } \right)}}\frac{{\left( {1 + {{\rm{e}}^{ - \frac{{2J}}{{kT}}}} + 10{{\rm{e}}^{^{ - \frac{{2J}}{{kT}}}}}} \right)}}{{\left( {1 + {{\rm{e}}^{ - \frac{{2J}}{{kT}}}} + 2{{\rm{e}}^{^{ - \frac{{2J}}{{kT}}}}}} \right)}}{N_\alpha } $

    (2)

    Where θ is a Weiss-like correction for intermolecular interactions, and Nα is temperature independent para-magnetism. Using this method, the susceptibilities for 2 above 15.0 K were simulated, and the best-fit parameters for 2 were obtained: J=-35.6 cm-1, g=2.11, θ=-0.47 K, Nα=3.60×10-4 cm3·mol-1 and R=5.2×10-5, where R=∑(Tobs-Tcalc)2/∑(Tobs)2. The J value of -35.6 cm-1 indicates that the coupling between the adjacent Cu(Ⅱ) centers is antiferromagnetic. According to the structure of compound 2, there are two sets of magnetic exchange pathways within the trinuclear copper(Ⅱ) cores, namely, via the μ-OH- groups and μ-carboxylates bridges (Fig. 4), which can be responsible for the observed antiferromagnetic exchange.

    In summary, we have synthesized two Cu(Ⅱ) coordination compounds whose structures depend on the molar ratio between NaOH and H2BIPA. This work demonstrates that the molar ratio between NaOH and carboxylic acid ligand has a significant effect on the structures of Cu(Ⅱ) coordination compounds.


    1. [1]

      Lu W G, Su C Y, Lu T B, et al. J. Am. Chem. Soc., 2006, 128:34-35 doi: 10.1021/ja0567337

    2. [2]

      Zhen X D, Lu T B. CrystEngComm, 2010, 12:324-336 doi: 10.1039/B911991D

    3. [3]

      Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:2403-2412 doi: 10.1021/acs.inorgchem.8b02926

    4. [4]

      Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:5875-5885 doi: 10.1021/acs.inorgchem.9b00242

    5. [5]

      Jain P, Ramachandran V, Clark R J, et al. J. Am. Chem. Soc., 2009, 131:13625-13627 doi: 10.1021/ja904156s

    6. [6]

      Minguez E G, Coronado E. Chem. Soc. Rev., 2018, 47:533-557 doi: 10.1039/C7CS00653E

    7. [7]

      Cui Y J, Yue Y F, Qian G D, et al. Chem. Rev., 2012, 112:1126-1162 doi: 10.1021/cr200101d

    8. [8]

      Zhao J, Wang Y N, Dong W W, et al. Inorg. Chem., 2016, 55:3265-3271 doi: 10.1021/acs.inorgchem.5b02294

    9. [9]

      Zhu J, Usov P M, Xu W Q, et al. J. Am. Chem. Soc., 2018, 140:993-1003 doi: 10.1021/jacs.7b10643

    10. [10]

      Fu H R, Zhao Y, Zhou Z, et al. Dalton Trans., 2018, 47:3725-3732 doi: 10.1039/C8DT00206A

    11. [11]

      Gu J Z, Liang X X, Cai Y, et al. Dalton Trans., 2017, 46:10908-10925 doi: 10.1039/C7DT01742A

    12. [12]

      Gu J Z, Liang X X, Cui Y H, et al. CrystEngComm, 2017, 19:117-128 doi: 10.1039/C6CE02115H

    13. [13]

      Ma D Y, Qin L, Lei J M, et al. CrystEngComm, 2016, 18:1363-1375 doi: 10.1039/C5CE02314A

    14. [14]

      Mao N N, Hu P, Yu F, et al. CrystEngComm, 2017, 19:4586-4594 doi: 10.1039/C7CE00808B

    15. [15]

      Gu J Z, Cai Y, Qian Z Y, et al. Dalton Trans., 2018, 47:7431-7444 doi: 10.1039/C8DT01299G

    16. [16]

      Gu J Z, Gao Z Q, Tang Y. Cryst. Growth Des., 2012, 12:3312-3323 doi: 10.1021/cg300442b

    17. [17]

      邹训重, 吴疆, 顾金忠, 等.无机化学学报, 2019, 35(9):1705-1711 doi: 10.11862/CJIC.2019.190ZOU Xun-Zhong, WU Jiang, GU Jin-Zhong, et al. Chinese J. Inorg. Chem., 2019, 35(9):1705-1711 doi: 10.11862/CJIC.2019.190

    18. [18]

      Gu J Z, Cui Y H, Liang X X, et al. Cryst. Growth Des., 2016, 16:4658-4670 doi: 10.1021/acs.cgd.6b00735

    19. [19]

      Peng Y W, Wu R J, Liu M, et al. Cryst. Growth Des., 2019, 19:1322-1328 doi: 10.1021/acs.cgd.8b01709

    20. [20]

      顾文君, 顾金忠.无机化学学报, 2017, 33(2):227-236 doi: 10.11862/CJIC.2017.035GU Wen-Jun, GU Jin-Zhong. Chinese J. Inorg. Chem., 2017, 33(2):227-236 doi: 10.11862/CJIC.2017.035

    21. [21]

      赵素琴, 顾金忠.无机化学学报, 2016, 32(9):1611-1618 doi: 10.11862/CJIC.2016.203ZHAO Su-Qin, GU Jin-Zhong. Chinese J. Inorg. Chem., 2016, 32(9):1611-1618 doi: 10.11862/CJIC.2016.203

    22. [22]

      Gu J Z, Liang X X, Cai Y, et al. Dalton Trans., 2017, 46:10908-10925 doi: 10.1039/C7DT01742A

    23. [23]

      Spek A L. Acta Crystallogr. Sect. C:Struct. Chem., 2015, C71:9-18

    24. [24]

      Addison A W, Rao T N, Reedijk J, et al. J. Chem. Soc. Dalton Trans., 1984, 7:1349-1356

    25. [25]

      Dey S K, Shit S, Mitra S, et al. Inorg. Chim. Acta, 2007, 360:1915-1920 doi: 10.1016/j.ica.2006.09.030

    26. [26]

      Spielberg E T, Fittipaldi M, Geibig D, et al. Inorg. Chim. Acta, 2010, 363:4269-4276 doi: 10.1016/j.ica.2010.08.017

    27. [27]

      Fernandes T S, Vilela R S, Valdo A K, et al. Inorg. Chem., 2016, 55:2390-2401 doi: 10.1021/acs.inorgchem.5b02786

    28. [28]

      Glaser T, Heidemeier M, Strautmann J B H, et al. Chem. Eur. J., 2007, 13:9191-9206 doi: 10.1002/chem.200700781

    29. [29]

      Bonner J C, Fisher M E. Phys. Rev. A, 1964, 135:640-658 doi: 10.1103/PhysRev.135.A640

  • Figure 1  Drawing of asymmetric unit of compound 1 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules were omitted for clarity

    Scheme 1  Coordination modes of BIPA2- ligands in compounds 1 and 2

    Figure 2  Perspective of 2D sheet in 1

    Dashed lines present the H-bonds

    Figure 3  Drawing of asymmetric unit of compound 2 with 30% probability thermal ellipsoids

    H atoms and lattice water molecules were omitted for clarity except H of OH-group; Symmetry codes: A: x+1, y, z; B:-x+1, -y, -z+1; C:-x+2, -y, -z+1

    Figure 4  One-dimensional chain viewed along c axis in 2

    Symmetry codes: A:-x+2, -y, -z; B: x-1, y, z; C: -x+1, -y, -z+1; D: x+1, y, z; E: -x+3, -y, -z+1

    Figure 5  Two-dimensional sheet viewed along c axis in 2

    Dashed lines present the π-π stacking interactions

    Figure 6  TGA curves of compounds 1 and 2

    Figure 7  Temperature dependence of χMT (○) and 1/χM(□) vs T for compound 2

    Red curve represents the best fit to the equations in the text, and the blue line shows the Curie-Weiss fitting

    Table 1.  Crystal data for compounds 1 and 2

    Compound 1 2
    Chemical formula C18H17BrCuN2O7 C36H24Br2Cu3N4O10
    Molecular weight 516.78 1 023.03
    Crystal system Monoclinic Monoclinic
    Space group P21/c P21/n
    a / nm 2.062 7(2) 0.985 21(4)
    b / nm 0.783 37(5) 1.741 02(7)
    c / nm 2.374 67(17) 1.030 43(7)
    β / (°) 91.907(7) 99.378(5)
    V / nm3 3.835 0(5) 1.743 84(16)
    Z 8 2
    F(000) 2 072 1 010
    θ range for data collection / (°) 3.286~25.050 3.538~25.044
    Limiting indices -24 ≤ h ≤ 24, -9 ≤ k ≤ 8, -28 ≤ l ≤ 22 -9 ≤ h ≤ 11, -18 ≤ k ≤ 20, -11 ≤ l ≤ 12
    Reflection collected, unique (Rint) 13 849, 6 782 (0.082 2) 5 731, 3 084 (0.033 4)
    Dc / (g·cm-3) 1.790 1.948
    μ / mm-1 3.268 4.172
    Data, restraint, parameter 6 782, 0, 523 3 084, 0, 254
    Goodness-of-fit on F2 1.000 1.048
    Final R indices [I≥2σ(I)] R1, wR2 0.060 8, 0.084 7 0.041 7, 0.093 7
    R indices (all data) R1, wR2 0.116 4, 0.146 7 0.061 8, 0.107 2
    Largest diff. peak and hole / (e·nm-3) 915 and -534 1 234 and -708
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and bond angles (°) for compounds 1 and 2

    1
    Cu(1)-O(2) 0.197 1(5) Cu(1)-O(9) 0.197 1(5) Cu(1)-O(10) 0.223 6(5)
    Cu(1)-N(1) 0.200 2(7) Cu(1)-N(2) 0.200 3(6) Cu(2)-O(5) 0.197 2(5)
    Cu(2)-O(11) 0.224 2(4) Cu(2)-O(12) 0.195 7(5) Cu(2)-N(3) 0.202 6(6)
    Cu(2)-N(4) 0.200 7(6)
    O(9)-Cu(1)-O(2) 93.6(2) O(9)-Cu(1)-N(1) 93.3(2) O(2)-Cu(1)-N(1) 168.4(3)
    O(9)-Cu(1)-N(2) 164.4(2) O(2)-Cu(1)-N(2) 90.6(3) N(2)-Cu(1)-N(1) 80.3(3)
    O(9)-Cu(1)-O(10) 90.96(19) O(2)-Cu(1)-O(10) 96.7(2) N(1)-Cu(1)-O(10) 92.5(2)
    N(2)-Cu(1)-O(10) 103.5(2) O(5)-Cu(2)-O(12) 94.0(2) O(12)-Cu(2)-N(4) 165.1(2)
    O(5)-Cu(2)-N(4) 90.0(2) O(12)-Cu(2)-N(3) 93.8(2) O(5)-Cu(2)-N(3) 168.0(2)
    N(4)-Cu(2)-N(3) 80.3(3) O(12)-Cu(2)-O(11) 91.90(19) O(11)-Cu(2)-O(5) 98.40(19)
    N(4)-Cu(2)-O(11) 101.8(2) N(3)-Cu(2)-O(11) 90.4(2)
    2
    Cu(1)-O(1) 0.193 0(3) Cu(1)-O(3)A 0.264 9(4) Cu(1)-O(5) 0.190 2(4)
    Cu(1)-N(1) 0.200 1(4) Cu(1)-N(2) 0.202 2(4) Cu(2)-O(4)A 0.195 2(3)
    Cu(2)-O(4)B 0.195 2(3) Cu(2)-O(5) 0.192 2(4) Cu(2)-O(5)C 0.192 2(4)
    O(5)-Cu(1)-O(1) 97.96(15) O(5)-Cu(1)-N(1) 92.83(16) O(1)-Cu(1)-N(1) 164.80(16)
    O(5)-Cu(1)-N(2) 169.39(16) O(1)-Cu(1)-N(2) 90.64(14) N(1)-Cu(1)-N(2) 79.96(15)
    O(1)-Cu(1)-O(3)A 100.94(15) O(5)-Cu(1)-O(3)A 79.77(14) N(1)-Cu(1)-O(3A) 91.46(15)
    N(2)-Cu(1)-O(3A) 92.57(15) O(5)-Cu(2)-O(4)A 91.76(14) O(5)-Cu(2)-O(4)B 88.24(14)
    Symmetry codes: A: x+1, y, z; B: -x+1, -y, -z+1; C: -x+2, -y, -z+1 for 2.
    下载: 导出CSV

    Table 3.  Hydrogen bond parameters of compounds 1 and 2

    Compound D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1 O(9)-H(1W)…O(1) 0.087 6 0.178 1 0.256 0 147.0
    O(9)-H(2W)…O(7)A 0.087 7 0.181 1 0.266 9 165.3
    O(10)-H(3W)…O(8)A 0.086 8 0.193 7 0.279 8 171.2
    O(10)-H(4W)…O(7)B 0.085 0 0.183 1 0.268 1 179.1
    O(11)-H(5W)…O(4)C 0.086 1 0.197 0 0.269 3 140.9
    O(11)-H(6W)…O(3)D 0.085 0 0.195 9 0.280 9 179.5
    O(12)-H(7W)…O(4)D 0.085 0 0.185 7 0.270 7 179.1
    O(12)-H(8W)…O(6) 0.087 4 0.178 5 0.255 6 145.8
    O(13)-H(9W)…O(8)A 0.085 0 0.204 4 0.289 4 179.1
    O(14)-H(11W)…O(3)E 0.085 0 0.196 8 0.281 6 175.3
    2 O(5)-H(1)…O(2) 0.076 0 0.215 1 0.281 6 146.5
    Symmetry codes: A: -x, y+1/2, -z+1/2; B: x, y+1, z; C: x, y-1, z; D: -x+1, y-1/2, -z+1/2; E: -x+1, y+1/2, -z+1/2 for 1.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  1598
  • HTML全文浏览量:  103
文章相关
  • 发布日期:  2020-02-10
  • 收稿日期:  2019-06-13
  • 修回日期:  2019-09-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章