Tri-hydroxyl Corrole and Its Gallium(Ⅲ) Complex: DNA-Binding, Photocleavage and in Vitro Photodynamic Antitumor Activities
- Corresponding author: SI Li-Ping, chhyliu@scut.edu.cn LIU Hai-Yang, lipingsi@fosu.edu.cn
Citation:
CHEN Xuan, WANG Hua-Hua, Waseem Akram, SUN Yan-Mei, LIAO Yu-Hui, SI Li-Ping, LIU Hai-Yang, Chi-Kwong Chang. Tri-hydroxyl Corrole and Its Gallium(Ⅲ) Complex: DNA-Binding, Photocleavage and in Vitro Photodynamic Antitumor Activities[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(9): 1687-1697.
doi:
10.11862/CJIC.2019.201
Ethirajan M, Chen Y H, Joshi P, et al. Chem. Soc. Rev., 2011, 40(1):340-362
doi: 10.1039/B915149B
Ferreira D P, Conceição D S, Calhelha R C, et al. Carbohydr. Polym., 2016, 151:160-171
doi: 10.1016/j.carbpol.2016.05.060
Zhu M L, Zhang J L, Zhou Y B, et al. Inorg. Chem., 2018, 57(18):11537-11542
doi: 10.1021/acs.inorgchem.8b01581
Josefsen L B, Boyle R W. Theranostics, 2012, 2(9):916-966
doi: 10.7150/thno.4571
Sutedja T, Baas P, Stewart F, et al. Eur. J. Cancer, 1992, 28(8/9):1370-1373
Nathan T R, Whitelaw D E, Chang S C, et al. The Journal of Urology, 2002, 168(4):1427-1432
Chang S C, Buonaccorsi G A, MacRobert A J, et al. Prostate, 1999, 32(2):89-98
Hsi R A, Kapatkin A, Strandberg J, et al. Clin. Cancer Res., 2001, 7(3):651-660
Kadish K M, Smith K M, Guilard R. The Porphyrin Handbook:Vol.33. San Diego:Academic Press, 2000:201-232
Gryko D T, Fox J P, Goldberg D P. J. Porphyrins Phthaloc-yanines, 2004, 8(9):1091-1105
doi: 10.1142/S1088424604000465
Aviv-Harel I, Gross Z. Chem. Eur. J., 2009, 15(34):8382-8394
doi: 10.1002/chem.200900920
Driggers E M, Hale S P, Lee J B, et al. Nat. Rev. Drug Discovery, 2008, 7:608-624
doi: 10.1038/nrd2590
Chang C K, Kong P W, Liu H Y, et al. Proc. SPIE, 2006, 6139:613915
doi: 10.1117/12.646328
Hwang J Y, Lubow D J, Chu D, et al. J. Controlled Release, 2012, 163(3):368-373
doi: 10.1016/j.jconrel.2012.09.015
Zhang Z, Wang H H, Yu H J, et al. Dalton Trans., 2017, 46(29):9481-9490
doi: 10.1039/C7DT00992E
Teo R D, Hwang J Y, Termini J, et al. Chem. Rev., 2017, 117(4):2711-2729
doi: 10.1021/acs.chemrev.6b00400
Zhang Z, Wen J Y, Lv B B, et al. Appl. Organomet. Chem., 2016, 30(3):132-139
doi: 10.1002/aoc.3408
Huang J T, Wang X L, Zhang Y, et al. Transition Met. Chem., 2013, 38(3):283-289
doi: 10.1007/s11243-013-9689-5
Zhang Y, Wen J Y, Mahmood M H, et al. Luminescence, 2015, 30(7):1045-1054
doi: 10.1002/bio.2857
Zhang Y, Wang Q, Wen J Y, et al. Chin. J. Chem., 2013, 31(10):1321-1328
doi: 10.1002/cjoc.201300488
Zhang Y, Wen J Y, Wang X L, et al. Appl. Organomet. Chem., 2014, 28(7):559-566
doi: 10.1002/aoc.3163
Liang Z H, Liu H Y, Zhou R, et al. J. Membr. Biol., 2016, 249(4):419-428
doi: 10.1007/s00232-016-9879-0
Wang J M, Li Y, Yuan H Q, et al. Appl. Organomet. Chem., 2016, 31(3):e3571
Liang Z H, Liu H Y, Jiang G B, et al. Chin. J. Chem., 2016, 34(10):997-1005
doi: 10.1002/cjoc.201600482
Wolfe A, Shimer G H, Meehan T. Biochemistry, 1987, 26(20):6392-6396
doi: 10.1021/bi00394a013
Lakowicz J R, Weber G. Biochemistry, 1973, 12(21):4161-4170
doi: 10.1021/bi00745a020
Cohen G, Eisenberg H. Biopolymers, 1969, 8(1):45-55
doi: 10.1002/bip.1969.360080105
Wei D G, Wilson W D, Neidle S. J. Am. Chem. Soc., 2013, 135(4):1369-1377
doi: 10.1021/ja308952y
Pasternack R F, Gibbs E J, Villafranca J J. Biochemistry, 1983, 22(23):5409-5417
doi: 10.1021/bi00292a024
Zhao P, Xu L C, Huang J W, et al. Spectrochim. Acta Part A, 2008, 71(4):1216-1223
doi: 10.1016/j.saa.2008.03.031
Olmsted J, Kearns D R. Biochemistry, 1977, 16(16):3647-3654
doi: 10.1021/bi00635a022
Nordén B, Tjerneld F. Biopolymers, 1982, 21(9):1713-1734
doi: 10.1002/bip.360210904
Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32(10):2573-2584
doi: 10.1021/bi00061a015
Wang Y G, Zhang Z, Wang H, et al. Bioorg. Chem., 2016, 67:57-63
doi: 10.1016/j.bioorg.2016.05.007
Stewart M J, Watson I D. Br. J. Clin. Pharmacol., 1983, 16(1):3-7
doi: 10.1111/j.1365-2125.1983.tb02136.x
Hwang J Y, Lubow D J, Sims J D, et al. J. Biomed. Opt., 2012, 17(1):015003
doi: 10.1117/1.JBO.17.1.015003
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Inset: plot of cDNA/|εa-εf| vs cDNA
λex: 370 nm; Inset: plot of F0/F vs ccompound
ccompound/cDNA=0, 0.1, 0.2
Lane 1~2: DNA control (irradiation or dark), lane 3: 40 μmol·L-1 corrole+DNA (dark), lane 4~8: corrole+DNA (irradiation); ccompound=20, 40, 80, 120, 160 μmol·L-1
Lane 1~2: DNA control (irradiation or dark), lane 3: corrole+DNA, lane 4: corrole+DNA+10 μmol·L-1 NaN3, lane 5: corrole+DNA+50 μmol·L-1 KI, lane 6: corrole+DNA+1000 U·mL-1 SOD
Cells were double labeled by annexin V and PI