Semi-artificial Photosynthesis Based on Inorganic Material-Microbe Hybrids
- Corresponding author: ZOU Zhi-Gang, zgzou@nju.edu.cn
Citation:
XIONG Wei, FENG Jian-Yong, MA Wei-Min, ZHAO Jing, LI Zhao-Sheng, ZOU Zhi-Gang. Semi-artificial Photosynthesis Based on Inorganic Material-Microbe Hybrids[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(9): 1521-1534.
doi:
10.11862/CJIC.2019.186
Nocera D G. Acc. Chem. Res., 2017, 50(3):616-619
doi: 10.1021/acs.accounts.6b00615
Li Z S, Luo W J, Zhang M L, et al. Energy Environ. Sci., 2013, 6(2):347-370
doi: 10.1039/C2EE22618A
Li Z S, Feng J Y, Yan S, et al. Nano Today, 2015, 10(4):468-486
doi: 10.1016/j.nantod.2015.06.001
Tu W G, Zhou Y, Zou Z G. Adv. Mater., 2014, 26(27):4607-4626
doi: 10.1002/adma.201400087
Wang W Y, Wang H, Zhu Q J, et al. Angew. Chem. Int. Ed., 2016, 55(32):9229-9233
doi: 10.1002/anie.201604091
Yao T T, An X R, Han H X, et al. Adv. Energy Mater., 2018, 8(21):1800210
doi: 10.1002/aenm.201800210
Li X B, Tung C H, Wu L Z. Nat. Rev. Chem., 2018, 2(8):160-173
doi: 10.1038/s41570-018-0024-8
CHEN Ya-Jing, LI Xu-Bing, TONG Zhen-Ho, et al. Progress in Chemistry, 2019, 31(1):38-49
Cook T R, Dogutan D K, Reece S Y, et al. Chem. Rev., 2010, 110(11):6474-6502
doi: 10.1021/cr100246c
Herek J L, Wohlleben W, Cogdell R J, et al. Nature, 2002, 417(6888):533-535
doi: 10.1038/417533a
Barber J. Chem. Soc. Rev., 2009, 38(1):185-196
doi: 10.1039/B802262N
Zhu X G, Long S P, Ort D R. Current Opin. Biotechnol., 2008, 19(2):153-159
doi: 10.1016/j.copbio.2008.02.004
Zhu X G, Long S P, Ort D R. Annu. Rev. Plant Biol., 2010, 61:235-261
doi: 10.1146/annurev-arplant-042809-112206
Blankenship R E, Tiede D M, Barber J, et al. Science, 2011, 332(6031):805-809
doi: 10.1126/science.1200165
Jagadevan S, Banerjee A, Banerjee C, et al. Biotechnol. Biofuels, 2018, 11(1):185
doi: 10.1186/s13068-018-1181-1
Kong F, Yamaoka Y, Ohama T, et al. Plant Cell Physiol., 2019, 60(6):1184-1196
doi: 10.1093/pcp/pcz022
Kung Y, Runguphan W, Keasling J D. ACS Synth. Biol., 2012, 1(11):498-513
doi: 10.1021/sb300074k
Xiong W, Yang Z, Zhai H L, et al. Chem. Commun., 2013, 49(68):7525-7527
doi: 10.1039/c3cc42766h
Xiong W, Zhao X H, Zhu G X, et al. Angew. Chem. Int. Ed., 2015, 54(41):11961-11965
doi: 10.1002/anie.201504634
Jiang N, Yang X Y, Deng Z, et al. Small, 2015, 11(17):2003-2010
doi: 10.1002/smll.201402381
Léonard A, Rooke J C, Meunier C F, et al. Energy Environ. Sci., 2010, 3(3):370-377
doi: 10.1039/b923859j
Ko E H, Yoon Y, Park J H, et al. Angew. Chem. Int. Ed., 2013, 52(47):12279-12282
doi: 10.1002/anie.201305081
XIONG Wei, TANG Rui-Kang, MA Wei-Min, et al. Chinese J. Inorg. Chem., 2019, 35(1):1-24
Cheng W H, Richter M H, May M M, et al. ACS Energy Lett., 2018, 3(8):1795-1800
doi: 10.1021/acsenergylett.8b00920
Khaselev O, Turner J A. Science, 1998, 280(5362):425-427
doi: 10.1126/science.280.5362.425
Zhou X H, Liu R, Sun K, et al. ACS Energy Lett., 2016, 1(4):764-770
doi: 10.1021/acsenergylett.6b00317
Verlage E, Hu S, Liu R, et al. Energy Environ. Sci., 2015, 8(11):3166-3172
doi: 10.1039/C5EE01786F
Ager J W, Shaner M R, Walczak K A, et al. Energy Environ. Sci., 2015, 8(10):2811-2824
doi: 10.1039/C5EE00457H
Jia J Y, Seitz L C, Benck J D, et al. Nat. Commun., 2016, 7:13237
doi: 10.1038/ncomms13237
Azcarate I, Costentin C, Robert M, et al. J. Am. Chem. Soc., 2016, 138(51):16639-16644
doi: 10.1021/jacs.6b07014
Rosen B A, Salehi-Khojin A, Thorson M R, et al. Science, 2011, 334(6056):643-644
doi: 10.1126/science.1209786
Gong M, Cao Z, Liu W, et al. ACS Cent. Sci., 2017, 3(9):1032-1040
doi: 10.1021/acscentsci.7b00316
Kim C, Jeon H S, Eom T, et al. J. Am. Chem. Soc., 2015, 137(43):13844-13850
doi: 10.1021/jacs.5b06568
Hall A S, Yoon Y, Wuttig A, et al. J. Am. Chem. Soc., 2015, 137(47):14834-14837
doi: 10.1021/jacs.5b08259
Ma S, Sadakiyo M, Luo R, et al. J. Power Sources, 2016, 301:219-228
doi: 10.1016/j.jpowsour.2015.09.124
Su J Z, Vayssieres L. ACS Energy Lett., 2016, 1(1):121-135
doi: 10.1021/acsenergylett.6b00059
Armstrong F A, Hirst J. Proc. Natl. Acad. Sci. USA, 2011, 108(34):14049-14054
doi: 10.1073/pnas.1103697108
Sakimoto K K, Kornienko N, Yang P D. Acc. Chem. Res., 2017, 50(3):476-481
doi: 10.1021/acs.accounts.6b00483
Kumar A, Hsu L H H, Kavanagh P, et al. Nat. Rev. Chem., 2017, 1(3):0024
doi: 10.1038/s41570-017-0024
Kornienko N, Zhang J Z, Sakimoto K K, et al. Nat. Nanotechnol., 2018, 13(10):890-899
doi: 10.1038/s41565-018-0251-7
Sakimoto K K, Kornienko N, Cestellos-Blanco S, et al. J. Am. Chem. Soc., 2018, 140(6):1978-1985
doi: 10.1021/jacs.7b11135
Xu L, Zhao Y L, Owusu K A, et al. Chem., 2018, 4(7):1538-1559
doi: 10.1016/j.chempr.2018.04.004
Lee Y V, Tian B Z. Nano Lett., 2019, 19(4):2189-2197
doi: 10.1021/acs.nanolett.9b00388
Lewis N S, Nocera D G. Proc. Natl. Acad. Sci. USA, 2006, 103(43):15729-15735
doi: 10.1073/pnas.0603395103
Kato M, Zhang J Z, Paul N, et al. Chem. Soc. Rev., 2014, 43(18):6485-6497
doi: 10.1039/C4CS00031E
Wang W Y, Chen J, Li C, et al. Nat. Commun., 2014, 5:4647
doi: 10.1038/ncomms5647
Zhang J Z, Bombelli P, Sokol K P, et al. J. Am. Chem. Soc., 2018, 140(1):6-9
doi: 10.1021/jacs.7b08563
McCormick A J, Bombelli P, Bradley R W, et al. Energy Environ. Sci., 2015, 8(4):1092-1109
doi: 10.1039/C4EE03875D
Hasan K, Yildiz H B, Sperling E, et al. Phys. Chem. Chem. Phys., 2014, 16(45):24676-24680
doi: 10.1039/C4CP04307C
Darus L, Ledezma P, Keller J, et al. Photosynth. Res., 2016, 127(3):347-354
doi: 10.1007/s11120-015-0193-y
Bae D, Seger B, Vesborg P C K, et al. Chem. Soc. Rev., 2017, 46(7):1933-1954
doi: 10.1039/C6CS00918B
Bhardwaj R, Pan R L, Gross E L. Nature, 1981, 289(5796):396-398
doi: 10.1038/289396a0
Pirbadian S, Barchinger S E, Leung K M, et al. Proc. Natl. Acad. Sci. USA, 2014, 111(35):12883-12888
doi: 10.1073/pnas.1410551111
He Z, Mansfeld F. Energy Environ. Sci., 2009, 2(2):215-219
doi: 10.1039/B814914C
Millo D, Harnisch F, Patil S A, et al. Angew. Chem. Int. Ed., 2011, 50(11):2625-2627
doi: 10.1002/anie.201006046
Busalmen J P, Esteve-Núñez A, Berná A, et al. Angew. Chem. Int. Ed., 2008, 47(26):4874-4877
doi: 10.1002/anie.200801310
Jiang X C, Hu J S, Fitzgerald L A, et al. Proc. Natl. Acad. Sci. USA, 2010, 107(39):16806-16810
doi: 10.1073/pnas.1011699107
Ding M, Shiu H Y, Li S L, et al. ACS Nano, 2016, 10(11):9919-9926
doi: 10.1021/acsnano.6b03655
Vinyard D J, Gimpel J, Ananyev G M, et al. J. Am. Chem. Soc., 2014, 136(10):4048-4055
doi: 10.1021/ja5002967
Millsaps J F, Bruce B D, Lee J W, et al. Photochem. Photobiol., 2001, 73(6):630-635
doi: 10.1562/0031-8655(2001)073<0630:NPPPOH>2.0.CO;2
Evans B R, O'Neill H M, Hutchens S A, et al. Nano Lett., 2004, 4(10):1815-1819
doi: 10.1021/nl0493388
Grimme R A, Lubner C E, Bryant D A, et al. J. Am. Chem. Soc., 2008, 130(20):6308-6309
doi: 10.1021/ja800923y
Tran P D, Artero V, Fontecave M. Energy Environ. Sci., 2010, 3(6):727-747
doi: 10.1039/b926749b
Brown K A, Wilker M B, Boehm M, et al. J. Am. Chem. Soc., 2012, 134(12):5627-5636
doi: 10.1021/ja2116348
Wilker M B, Utterback J K, Greene S, et al. J. Phys. Chem. C, 2017, 122(1):741-750
Brown K A, Dayal S, Ai X, et al. J. Am. Chem. Soc., 2010, 132(28):9672-9680
doi: 10.1021/ja101031r
Caputo C A, Gross M A, Lau V W, et al. Angew. Chem. Int. Ed., 2014, 53(43):11538-11542
doi: 10.1002/anie.201406811
Hutton G A M, Reuillard B, Martindale B C M, et al. J. Am. Chem. Soc., 2016, 138(51):16722-16730
doi: 10.1021/jacs.6b10146
Woolerton T W, Sheard S, Reisner E, et al. J. Am. Chem. Soc., 2010, 132(7):2132-2133
doi: 10.1021/ja910091z
Brown K A, Wilker M B, Boehm M, et al. ACS Catal., 2016, 6(4):2201-2204
doi: 10.1021/acscatal.5b02850
Brown K A, Harris D F, Wilker M B, et al. Science, 2016, 352(6284):448-450
doi: 10.1126/science.aaf2091
Hickey D P, Lim K, Cai R, et al. Chem. Sci., 2018, 9(23):5172-5177
doi: 10.1039/C8SC01638K
Milton R D, Abdellaoui S, Khadka N, et al. Energy Environ. Sci., 2016, 9(8):2550-2554
doi: 10.1039/C6EE01432A
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268):74-77
doi: 10.1126/science.aad3317
Kornienko N, Sakimoto K K, Herlihy D M, et al. Proc. Natl. Acad. Sci. USA, 2016, 113(42):11750-11755
doi: 10.1073/pnas.1610554113
Sakimoto K K, Zhang S J, Yang P D. Nano Lett., 2016, 16(9):5883-5887
doi: 10.1021/acs.nanolett.6b02740
Zhang H, Liu H, Tian Z Q, et al. Nat. Nanotechnol., 2018, 13(10):900
doi: 10.1038/s41565-018-0267-z
Guo J L, Suástegui M, Sakimoto K K, et al. Science, 2018, 362(6416):813-816
doi: 10.1126/science.aat9777
Rabaey K, Rozendal R A. Nat. Rev. Microbiol., 2010, 8(10):706-716
doi: 10.1038/nrmicro2422
Jeong H E, Kim I, Karam P, et al. Nano Lett., 2013, 13(6):2864-2869
doi: 10.1021/nl401205b
Sakimoto K K, Liu C, Lim J, et al. Nano Lett., 2014, 14(9):5471-5476
doi: 10.1021/nl502946j
Claassens N J, Sousa D Z, Santos V A P M, et al. Nat. Rev. Microbiol., 2016, 14(11):692-706
doi: 10.1038/nrmicro.2016.130
Liu C, Gallagher J J, Sakimoto K K, et al. Nano Lett., 2015, 15(5):3634-3639
doi: 10.1021/acs.nanolett.5b01254
Torella J P, Gagliardi C J, Chen J S, et al. Proc. Natl. Acad. Sci. USA, 2015, 112(8):2337-2342
doi: 10.1073/pnas.1424872112
Nichols E M, Gallagher J J, Liu C, et al. Proc. Natl. Acad. Sci. USA, 2015, 112(37):11461-11466
doi: 10.1073/pnas.1508075112
Liu C, Colón B C, Ziesack M, et al. Science, 2016, 352(6290):1210-1213
doi: 10.1126/science.aaf5039
Liu C, Colón B E, Silver P A, et al. J. Photochem. Photobiol. A:Chem., 2018, 358:411-415
doi: 10.1016/j.jphotochem.2017.10.001
Liu C, Sakimoto K K, Colón B C, et al. Proc. Natl. Acad. Sci. USA, 2017, 114(25):6450-6455
doi: 10.1073/pnas.1706371114
Milton R D, Cai R, Sahin S, et al. J. Am. Chem. Soc., 2017, 139(26):9044-9052
doi: 10.1021/jacs.7b04893
Marshall C W, Ross D E, Fichot E B, et al. Environ. Sci. Technol., 2013, 47(11):6023-6029
doi: 10.1021/es400341b
Siegert M, Yates M D, Call D F, et al. ACS Sustainable Chem. Eng., 2014, 2(4):910-917
doi: 10.1021/sc400520x
Zhang T, Nie H R, Bain T S, et al. Energy Environ. Sci., 2013, 6(1):217-224
doi: 10.1039/C2EE23350A
Rodrigues R M, Guan X, Iiguez J A, et al. Nat. Catal., 2019, 2:407-414
doi: 10.1038/s41929-019-0264-0
Ort D R, Merchant S S, Alric J, et al. Proc. Natl. Acad. Sci. USA, 2015, 112(28):8529-8536
doi: 10.1073/pnas.1424031112
Li H, Opgenorth P H, Wernick D G, et al. Science, 2012, 335(6076):1596-1596
doi: 10.1126/science.1217643
Yishai O, Lindner S N, de la Cruz J G, et al. Curr. Opin. Chem. Biol., 2016, 35:1-9
doi: 10.1016/j.cbpa.2016.07.005
Moscoviz R, Toledo-Alarcón J, Trably E, et al. Trends Biotechnol., 2016, 34(11):856-865
doi: 10.1016/j.tibtech.2016.04.009
Xie X, Hu L, Pasta M, et al. Nano Lett., 2010, 11(1):291-296
Mink J E, Rojas J P, Logan B E, et al. Nano Lett., 2012, 12(2):791-795
doi: 10.1021/nl203801h
Cunningham D P, Lundie L L. Appl. Environ. Microbiol., 1993, 59(1):7-14
Wang B, Zeng C, Chu K H, et al. Adv. Energy Mater., 2017, 7(20):1700611
doi: 10.1002/aenm.201700611
Yang S H, Lee K B, Kong B, et al. Angew. Chem. Int. Ed., 2009, 48(48):9160-9163
doi: 10.1002/anie.200903010
Lee K Y, Mooney D J. Prog. Polym. Sci., 2012, 37(1):106-126
doi: 10.1016/j.progpolymsci.2011.06.003
Liang K, Richardson J J, Cui J, et al. Adv. Mater., 2016, 28(36):7910-7914
doi: 10.1002/adma.201602335
Li Z, Wang W Y, Ding C M, et al. Energy Environ. Sci., 2017, 10(3):765-771
doi: 10.1039/C6EE03401B
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259