Citation: TANG Long, YIN Si-Yu, WANG Ying-Lu, SHI De-Qian, HOU Xiang-Yang, WANG Xiao, WANG Ji-Jiang. Syntheses, Structures and Properties of Four Transition Metal Complexes with 2, 4-Oxybis(benzoic acid) and N-Donor Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(10): 1728-1736. doi: 10.11862/CJIC.2019.170 shu

Syntheses, Structures and Properties of Four Transition Metal Complexes with 2, 4-Oxybis(benzoic acid) and N-Donor Ligands

Figures(12)

  • Four transition metal coordination polymers {[Mn(2, 4-Hoba)2(bipy)(H2O)2]·2H2O}n (1), [Mn(2, 4-oba)(phen)]n (2), [Co(2, 4-oba)(bimyb)0.5]n (3) and[Ni(2, 4-oba)(bimyb)0.5]n (4) (2, 4-H2oba=2, 4-oxybis(benzoic acid), bipy=4, 4'-bipyridine, phen=1, 10-phenanthroline, bimyb=1, 4-bis(imidazole-1-ylmethyl) benzene) were synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, IR spectroscopy and elemental analysis. Complex 1 is a 1D chain structure, which is extended to a 2D supramolecular architecture by O-H…O hydrogen bonding. Complex 2 shows a 1D wavy chain structure, which is expanded to a 2D wavelike network through aromatic π-π stacking interactions. Complexes 3 and 4 are 2D layer structures produced by ligands bridging binuclear paddle-wheel units. The magnetic properties of 2~4 have also been investigated, and the exchange conpling constants were -0.79, -8.97 and -11.42 cm-1, respectively. According to the crystal structures, the magnetic coupling behavior of complexes 2~4 were studied by using hybrid DFT-BS method, and the result reveals that the calculated exchange coupling constants (J) are in good agreement with the experimental data.
  • 加载中
    1. [1]

      Wu Y P, Zhou W, Zhao J, et al. Angew. Chem. Int. Ed., 2017, 56:13001-13005  doi: 10.1002/anie.201707238

    2. [2]

      Huang N, Wang K C, Drake H, et al. J. Am. Chem. Soc., 2018, 140:6383-6390  doi: 10.1021/jacs.8b02710

    3. [3]

      Shi Z Z, Qin L, Zheng H G. Dalton Trans., 2017, 46:4589-4594  doi: 10.1039/C7DT00614D

    4. [4]

      Zhai Q G, Bu X H, Zhao X, et al. Acc. Chem. Res., 2017, 50:407-417  doi: 10.1021/acs.accounts.6b00526

    5. [5]

      Zhang X Y, Li B, Zhang J P. Inorg. Chem., 2016, 55:3378-3383  doi: 10.1021/acs.inorgchem.5b02785

    6. [6]

      Park J, Xu M, Li F Y, et al. J. Am. Chem. Soc., 2018, 140:5493-5499  doi: 10.1021/jacs.8b01613

    7. [7]

      Pang J D, Yuan S, Qin J S, et al. Coord. Chem. Rev., 2018, 354:28-45  doi: 10.1016/j.ccr.2017.06.007

    8. [8]

      Li H Y, Cao L H, Wei Y L, et al. CrystEngComm, 2015, 17:6297-6307  doi: 10.1039/C5CE01008J

    9. [9]

      LI Yu, ZOU Xun-Zhong, GU Jin-Zhong, et al. Chinese J. Inorg. Chem., 2018, 34(6):1159-1165
       

    10. [10]

      YIN Xiu-Ju, LIAO Bei-Ling, WU Han-Min, et al. Chinese J. Inorg. Chem., 2017, 33(6):1043-1050
       

    11. [11]

      WANG Ji-Jiang, HOU Xiang-Yang, GAO Lou-Jun, et al. Chinese J. Inorg. Chem., 2014, 30(7):1616-1620
       

    12. [12]

      Tang L, Jing R, Wang J J, et al. Chin. J. Struct. Chem., 2017, 36:1179-1184

    13. [13]

      Tang L, Fu F, Wang J J, et al. Polyhedron, 2015, 88:116-124  doi: 10.1016/j.poly.2014.12.023

    14. [14]

      Liu J Q, Wang Y Y, Zhang Y N, et al. Eur. J. Inorg. Chem., 2009:147-154
       

    15. [15]

      He J H, Xiao D R, Yan S W, et al. Solid State Sci., 2012, 14:1203-1209  doi: 10.1016/j.solidstatesciences.2012.06.004

    16. [16]

      Xue D X, Lin J B, Zhang J P, et al. CrystEngComm, 2009, 11:183-188  doi: 10.1039/B813226G

    17. [17]

      Liu J Q, Wang Y Y, Ma L F, et al. CrystEngComm, 2008, 10:1123-1125  doi: 10.1039/b808540b

    18. [18]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Ver.6.1, Gaussian Inc., Wallingford CT, 2004.

    19. [19]

      Becke A D. J. Chem. Phys., 1997, 107:8554-8560  doi: 10.1063/1.475007

    20. [20]

      Ruiz E, Rodríguez-Fortea A, Tercero J, et al. Chem. Phys., 2005, 123:074102-074102
       

    21. [21]

      Sheldrick G M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 2008.

    22. [22]

      Sheldrick G M. Acta Crystallogr. Sect. A:Found. Crystallogr., 2015, A71:3-8
       

    23. [23]

      Sheldrick G M. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:3-8
       

    24. [24]

      Yang W B, Lin X, Blake A J, et al. Inorg. Chem., 2009, 48:11067-11078  doi: 10.1021/ic901429u

    25. [25]

      Carlin R L. Magnetochemistry. Berlin: Springer, 1986.

    26. [26]

      Kahn O. Molecular Magnetism. New York: VCH Publishers Inc., 1993.

    27. [27]

      Ishida T, Kawakami T, Mitsubori S I, et al. J. Chem. Soc. Dalton Trans., 2002:3177-3186
       

    28. [28]

      Beghidja C, Rogez G, Kortus J, et al. J. Am. Chem. Soc., 2006, 128:3140-3141  doi: 10.1021/ja0575023

    29. [29]

      Ruiz E, Alemany P, Alvarez S, et al. Inorg. Chem., 1997, 36:3683-3688  doi: 10.1021/ic970310r

    30. [30]

      Zhou X H, Chen Q Q, Liu B L, et al. Dalton Trans., 2017, 46:430-444  doi: 10.1039/C6DT04270H

    31. [31]

      Rodríguez-Fortea A, Alemany P, Alvarez S, et al. Inorg. Chem., 2001, 40:5868-5877  doi: 10.1021/ic001420s

  • 加载中
    1. [1]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    8. [8]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    11. [11]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    12. [12]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(6)
  • Abstract views(460)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return