Preparation and Photoelectrochemical Catalytic Properties of Porous Silicon/TiO2 Nanowires Photoanodes
- Corresponding author: YANG Ji-Kai, jikaiyang0625@163.com MA Fu-Zhe, mafuzhe2002@163.com
Citation:
ZHAO Yi-Ming, YANG Ji-Kai, MA Fu-Zhe, CHEN Zhang-Xiao-Xiong, WEI Zi-Juan, ZHANG Yu-Fei, CHENG Ming, YANG Xue, XIAO Nan, WANG Guo-Zheng, WANG Xin, HUANG Ke-Ke. Preparation and Photoelectrochemical Catalytic Properties of Porous Silicon/TiO2 Nanowires Photoanodes[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(4): 613-620.
doi:
10.11862/CJIC.2019.088
Fujishima A, Honda K. Nature, 1972, 238(5385):37-38
Kümmerer K. J. Environ. Manage., 2009, 90(8):2354-2366
doi: 10.1016/j.jenvman.2009.01.023
Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528):269-271
doi: 10.1126/science.1061051
Liao J H, Shi L Y, Yuan S, et al. J. Phys. Chem. C, 2009, 113(43):18778-18783
doi: 10.1021/jp905720g
Albu S P, Ghicov A, Macak J M, et al. Nano Lett., 2007, 7(5):1286-1289
doi: 10.1021/nl070264k
Lee K, Kim D, Roy P, et al. J. Am. Chem. Soc., 2010, 132(5):1478-1479
doi: 10.1021/ja910045x
Zhu K, Neale N R, Miedaner A, et al. Nano Lett., 2007, 7(1):69-74
doi: 10.1021/nl062000o
Liu Z Y, Zhang X T, Nishimoto S, et al. J. Phys. Chem. C, 2008, 112(1):253-259
doi: 10.1021/jp0772732
Baram N, Ein-Eli Y. J. Phys. Chem. C, 2010, 114(21):9781-9790
doi: 10.1021/jp911687w
Hou Y, Li X Y, Zhao Q D, et al. Environ. Sci. Technol., 2010, 44(13):5098-5103
doi: 10.1021/es100004u
CHEN Yi, SHI Li-Yi, YUAN Shuai. Journal of Inorganic Materials, 2009, 24(4):680-684
Chen X, Mao S S. Chem. Rev., 2007, 107(7):2891-2959
doi: 10.1021/cr0500535
Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95(1):69-96
doi: 10.1021/cr00033a004
Endo M, Strano M S, Ajayan P M. Topics in Applied Physics: Vol.111. Jorio A. Ed., Berlin, Heidelberg: Springer, 2007: 13-62
Peng K Q, Wang X, Lee S T. Appl. Phys. Lett., 2008, 92(16):163103
doi: 10.1063/1.2909555
Goodey A P, Eichfeld S M, Lew K K, et al. J. Am. Chem. Soc., 2007, 129(41):12344-12345
doi: 10.1021/ja073125d
Nakato Y, Ueda T, Egi Y, et al. J. Electrochem. Soc., 1987, 134(2):353-358
doi: 10.1149/1.2100459
Mills A, Davies R H, Worsley D. Chem. Soc. Rev., 1993, 22(6):417-425
doi: 10.1039/cs9932200417
Garnett E C, Yang P. J. Am. Chem. Soc., 2008, 130(29):9224-9225
doi: 10.1021/ja8032907
Li Y, Qian F, Xiang J, et al. Mater. Today, 2006, 9(10):18-27
doi: 10.1016/S1369-7021(06)71650-9
Liu Y S, Ji G B, Wang J Y, et al. Nanoscale Res. Lett., 2012, 7(1):663
doi: 10.1186/1556-276X-7-663
Goodey A P, Eichfeld S M, Lew K K, et al. J. Am. Chem. Soc., 2007, 129(41):12344-12345
doi: 10.1021/ja073125d
Angelome P C, Andrini L, Calvo M E, et al. J. Phys. Chem. C, 2007, 111(29):10886-10893
doi: 10.1021/jp069020z
Liu Y J, Szeifert J M, Feckl J M, et al. ACS Nano, 2010, 4(9):5373-5381
doi: 10.1021/nn100785j
YU Li-Sheng. Physics of Semiconductor Heterojun-ctions. 2nd Ed.. Beijing:Science Press, 2006.
Yu H T, Chen S, Quan X, et al. Appl. Catal. B, 2009, 90(1/2):242-248
Hwang Y J, Boukai A, Yang P D. Nano Lett., 2008, 9(1):410-415
Shi J, Hara Y, Sun C L, et al. Nano Lett., 2011, 11(8):3413-3419
doi: 10.1021/nl201823u
Noh S Y, Sun K, Choi C, et al. Nano Energy, 2013, 2(3):351-360
doi: 10.1016/j.nanoen.2012.10.010
KOU Yan-Qiang, YANG Ji-Kai, ZHU Ling-Xi, et al. Chem. J. Chinese Universities, 2015, 36(12):2485-2490
doi: 10.7503/cjcu20150378
Peng K Q, Yan Y J, Gao S P, et al. Adv. Funct. Mater., 2003, 13(2):127-132
doi: 10.1002/adfm.200390018
Huang Z P, Shimizu T, Senz S, et al. J. Phys. Chem. C, 2010, 114(24):10683-10690
doi: 10.1021/jp911121q
Tsujino K, Matsumura M. Adv. Mater., 2005, 17(8):1045-1047
doi: 10.1002/(ISSN)1521-4095
Xia W W, Zhu J, Wang H B, et al. CrystEngComm, 2014, 16(20):4289-4297
doi: 10.1039/C4CE00006D
M T McDowell, M F Lichterman, A I Carim, et al. ACS Appl. Mater. Interfaces, 2015, 7(28):15189-15199
doi: 10.1021/acsami.5b00379
Huang Z P, Geyer N, Werner P, et al. Adv. Mater., 2011, 23(2):285-308
doi: 10.1002/adma.v23.2
Vazsonyi E, De Clercq K, Einhaus R, et al. Sol. Energy Mater. Sol. Cells, 1999, 57(2):179-188
doi: 10.1016/S0927-0248(98)00180-9
Shankar K, Mor G K, Prakasam H E, et al. Nanotechnology, 2007, 18(6):065707
doi: 10.1088/0957-4484/18/6/065707
Hinckley S, McCann J F, Haneman D. Solar Cells, 1986, 17(2/3):317-342
Yu H T, Chen S, Quan X, et al. Appl. Catal. B, 2009, 90(1/2):242-248
Yan J A, Yang L, Chou M Y. Phys. Rev. B, 2007, 76(11):115319
doi: 10.1103/PhysRevB.76.115319
Cserveny S I. Int. J. Electron., 1968, 25(1):65-80
doi: 10.1080/00207216808938067
Fulton C C, Lucovsky G, Nemanich R J. Appl. Phys. Lett., 2004, 84(4):580-582
doi: 10.1063/1.1639944
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
With etching for (a) 15, (b) 25, (c) 35 and (d) 45 min
With etching for (a) 15, (b) 25, (c) 35 and (d) 45 min