Research Progress on Modification of Organisms by Biomimetic Inorganic Nanomaterials
- Corresponding author: ZOU Zhi-Gang, zgzou@nju.edu.cn
Citation:
XIONG Wei, TANG Rui-Kang, MA Wei-Min, ZOU Zhi-Gang. Research Progress on Modification of Organisms by Biomimetic Inorganic Nanomaterials[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(1): 1-24.
doi:
10.11862/CJIC.2019.008
Schopf J W. Earth's Earliest Biosphere:its Origin and Evolution. Princeton:Princeton University Press, 1983.
Morris S C. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(9):4426-4429
doi: 10.1073/pnas.97.9.4426
Valentine J W, Jablonski D, Erwin D H. Development, 1999, 126(5):851-859
Marshall C R. Annu. Rev. Earth Planet. Sci., 2006, 34:355-384
doi: 10.1146/annurev.earth.33.031504.103001
Lowenstam H A. Science, 1981, 211(4487):1126-1131
doi: 10.1126/science.7008198
CUI Fu-Zhai, FENG Qing-Ling. Bioma-teriology. Beijing:Tsinghua University Press, 2004.
Shin H, Jo S, Mikos A. Biomaterials, 2003, 24(24):4353-4364
doi: 10.1016/S0142-9612(03)00339-9
Romano P, Fabritius H, Raabe D. Acta Biomater., 2007, 3(3):301-309
Lowenstam H A, Weiner S. On Biomineralization. Oxford:Oxford University Press, 1989.
Faivre D, Schüler D. Chem. Rev., 2008, 108(11):4875-4898
doi: 10.1021/cr078258w
Aizenberg J, Tkachenko A, Weiner S, et al. Nature, 2001, 412(6849):819-822
doi: 10.1038/35090573
Addadi L, Joester D, Nudelman F, et al. Chem.-Eur. J., 2006, 12(4):980-987
doi: 10.1002/(ISSN)1521-3765
Yao H, Dao M, Imholt T, et al. Proc. Natl. Acad. Sci. U.S.A., 2010, 107(3):987-992
doi: 10.1073/pnas.0912988107
Hamm C E, Merkel R, Springer O, et al. Nature, 2003, 421(6925):841-843
doi: 10.1038/nature01416
Milligan A J, Morel F M M. Science, 2002, 297(5588):1848-1850
doi: 10.1126/science.1074958
Nys Y, Gautron J, Garcia-Ruiz J M, et al. C. R. Palevol, 2004, 3(6/7):549-562
Wang B, Liu P, Tang R K. Bioessays, 2010, 32(8):698-708
doi: 10.1002/bies.200900120
Arias J L, Fink D J, Xiao S Q, et al. Int. Rev. Cytol., 1993, 145:217-250
Karlsson O, Lilja C. Zoology, 2008, 111(6):494-502
doi: 10.1016/j.zool.2007.11.005
Bazylinski D A, Frankel R B. Nat. Rev. Microbiol., 2004, 2(3):217-230
doi: 10.1038/nrmicro842
Gower L B. Chem. Rev., 2008, 108(11):4551-4627
doi: 10.1021/cr800443h
Farina M, Esquivel D M S, de Barros H G P L. Nature, 1990, 343(6255):256-258
doi: 10.1038/343256a0
Xu X R, Wang B, Tang R K. ChemSusChem, 2011, 4(10):1439-1446
doi: 10.1002/cssc.v4.10
Park J H, Yang S H, Lee J, et al. Adv. Mater., 2014, 26(13):2001-2010
doi: 10.1002/adma.201304568
Chen W, Wang G C, Tang R K. Nano Res., 2014, 7(10):1404-1428
doi: 10.1007/s12274-014-0509-9
YANG Yu-Ling, WANG Guang-Chuan, TANG Rui-Kang. Sci. Sin.:Chim., 2014, 44(4):601-610
Park J H, Hong D, Lee J, et al. Acc. Chem. Res., 2016, 49(5):792-800
doi: 10.1021/acs.accounts.6b00087
Liu Z M, Xu X R, Tang R K. Adv. Funct. Mater., 2016, 26(12):1862-1880
doi: 10.1002/adfm.201504480
Kim B J, Cho H, Park J H, et al. Adv. Mater., 2018, 30(14):1706063
doi: 10.1002/adma.v30.14
Mann S. Biomineralization:Principles and Concepts in Bioi-norganic Materials Chemistry. Oxford:Oxford University Press, 2001.
Elhadj S, Salter E A, Wierzbicki A, et al. Cryst. Growth Des., 2006, 6(1):197-201
doi: 10.1021/cg050288+
Addadi L, Weiner S. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(12):4110-4114
doi: 10.1073/pnas.82.12.4110
Chu X B, Jiang W G, Zhang Z S, et al. J. Phys. Chem. B, 2011, 115(5):1151-1157
doi: 10.1021/jp106863q
Tarasevich B J, Chusuei C C, Allara D L. J. Phys. Chem. B, 2003, 107(38):10367-10377
doi: 10.1021/jp027445p
Nonoyama T, Kinoshita T, Higuchi M, et al. Langmuir, 2011, 27(11):7077-7083
doi: 10.1021/la2006953
Toworfe G K, Composto R J, Shapiro I M, et al. Biomaterials, 2006, 27(4):631-642
doi: 10.1016/j.biomaterials.2005.06.017
Kröger N, Lorenz S, Brunner E, et al. Science, 2002, 298(5593):584-586
doi: 10.1126/science.1076221
Kröger N, Deutzmann R, Sumper M. Science, 1999, 286(5442):1129-1132
doi: 10.1126/science.286.5442.1129
Sumper M, Lorenz S, Brunner E. Angew. Chem. Int. Ed., 2003, 42(42):5192-5195
doi: 10.1002/(ISSN)1521-3773
Pohnert G. Angew. Chem. Int. Ed., 2002, 41(17):3167-3169
doi: 10.1002/1521-3773(20020902)41:17<>1.0.CO;2-C
Kröger N, Deutzmann R, Bergsdorf C, et al. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(26):14133-141138
doi: 10.1073/pnas.260496497
Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108(11):4935-4978
doi: 10.1021/cr8002328
Wang E, Lee S H, Lee S W. Biomacromolecules, 2011, 12(3):672-680
doi: 10.1021/bm101322m
Sarikaya M, Tamerler C, Jen A K, et al. Nat. Mater., 2003, 2(9):577-585
doi: 10.1038/nmat964
Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547):1684-1688
doi: 10.1126/science.1063187
Wong P F C, Patwardhan S V, Belton D J, et al. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(25):9428-9433
doi: 10.1073/pnas.0601096103
Xu A W, Ma Y, Cölfen H. J. Mater. Chem., 2007, 17(5):415-449
Aksay I A, Trau M, Manne S, et al. Science, 1996, 273(5277):892-898
doi: 10.1126/science.273.5277.892
Mann S. Nature, 1993, 365(6446):499-505
doi: 10.1038/365499a0
Loste E, Park R J, Warren J, et al. Adv. Funct. Mater., 2004, 14(12):1211-1220
doi: 10.1002/(ISSN)1616-3028
Meldrum F C, Heywood B R, Mann S. Science, 1992, 257(5069):522-523
doi: 10.1126/science.1636086
Meldrum F C, Wade V J, Nimmo D L, et al. Nature, 1991, 349(6311):684-687
doi: 10.1038/349684a0
Ensign D, Young M, Douglas T. Inorg. Chem., 2004, 43(11):3441-3446
doi: 10.1021/ic035415a
Allen M, Willits D, Mosolf J, et al. Adv. Mater., 2002, 14(21):1562-1565
doi: 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D
Allen M, Willits D, Young M, et al. Inorg. Chem., 2003, 42(20):6300-6305
doi: 10.1021/ic0343657
Douglas T, Strable E, Willits D, et al. Adv. Mater., 2002, 14(6):415-418
doi: 10.1002/(ISSN)1521-4095
Hosein H A, Strongin D R, Allen M, et al. Langmuir, 2004, 20(23):10283-10287
doi: 10.1021/la0491100
Cölfen H, Mann S. Angew. Chem. Int. Ed., 2003, 42(21):2350-2365
doi: 10.1002/anie.200200562
Kniep R, Busch S. Angew. Chem. Int. Ed., 1996, 35(22):2624-2626
doi: 10.1002/(ISSN)1521-3773
Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291(5511):2115-2117
doi: 10.1126/science.1057553
Urbach A R, Love J C, Prentiss M G, et al. J. Am. Chem. Soc., 2003, 125(42):12704-12705
doi: 10.1021/ja0378308
Grzybowski B A, Stone H A, Whitesides G M. Nature, 2000, 405(6790):1033-1036
doi: 10.1038/35016528
Love J C, Urbach A R, Prentiss M G, et al. J. Am. Chem. Soc., 2003, 125(42):12696-12697
doi: 10.1021/ja037642h
Decher G. Science, 1997, 277(5330):1232-1237
doi: 10.1126/science.277.5330.1232
Wang B, Liu P, Jiang W G, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564
doi: 10.1002/(ISSN)1521-3773
Mell J C, Burgess S M. Encyclopedia of Life Sciences, 2002:1-8
Botstein D, Fink G R. Science, 1988, 240(4858):1439-1443
doi: 10.1126/science.3287619
Goffeau A, Barrell B G, Bussey H, et al. Science, 1996, 274(5287):546-567
doi: 10.1126/science.274.5287.546
Cabib E, Roh D H, Schmidt M, et al. J. Biol. Chem., 2001, 276(23):19679-19682
doi: 10.1074/jbc.R000031200
Yang S H, Lee K B, Kong B, et al. Angew. Chem. Int. Ed., 2009, 48(48):9160-9163
doi: 10.1002/anie.v48:48
Wang G C, Wang L J, Liu P, et al. ChemBioChem, 2010, 11(17):2368-2373
doi: 10.1002/cbic.v11.17
Atchison N, Fan W, Brewer D D, et al. Angew. Chem. Int. Ed., 2011, 50(7):1617-1621
doi: 10.1002/anie.201006231
Lee J, Choi J, Park J H, et al. Angew. Chem. Int. Ed., 2014, 53(31):8056-8059
doi: 10.1002/anie.201402280
Park J H, Choi I S, Yang S H. Chem. Commun., 2015, 51(25):5523-5525
doi: 10.1039/C4CC08544B
Zhao R B, Wang B, Yang X Y, et al. Angew. Chem. Int. Ed., 2016, 55(17):5225-5229
doi: 10.1002/anie.201601364
Jiang N, Yang X Y, Ying G L, et al. Chem. Sci., 2015, 6(1):486-491
doi: 10.1039/C4SC02638A
Drachuk I, Shchepelina O, Harbaugh S, et al. Small, 2013, 9(18):3128-3137
doi: 10.1002/smll.v9.18
Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849):426-430
doi: 10.1126/science.1147241
Yang S H, Kang S M, Lee K B, et al. J. Am. Chem. Soc., 2011, 133(9):2795-2797
doi: 10.1021/ja1100189
Hong D, Lee H, Ko E H, et al. Chem. Sci., 2015, 6(1):203-208
doi: 10.1039/C4SC02789B
Wang B, Wang G C, Zhao B J, et al. Chem. Sci., 2014, 5(9):3463-3468
doi: 10.1039/C4SC01120A
Dunn T, Gable K, Beeler T. J. Biol. Chem., 1994, 269(10):7273-7278
Clapham D E. Cell, 1995, 80(2):259-268
doi: 10.1016/0092-8674(95)90408-5
Maheshwari V, Fomenko D E, Singh G, et al. Langmuir, 2009, 26(1):371-377
Kempaiah R, Chung A, Maheshwari V. ACS Nano, 2011, 5(7):6025-6031
doi: 10.1021/nn201791k
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268):74-77
doi: 10.1126/science.aad3317
Wang X Y, Deng Y Q, Shi H Y, et al. Small, 2010, 6(3):351-354
Wang G C, Li X F, Mo L J, et al. Angew. Chem. Int. Ed., 2012, 124(42):10728-10731
doi: 10.1002/ange.201206154
Guan C F, Wang G, Ji J, et al. J. Sol-Gel Sci. Technol., 2008, 48(3):369-377
doi: 10.1007/s10971-008-1811-3
Müller W E G, Engel S, Wang X H, et al. Biomaterials, 2008, 29(7):771-779
doi: 10.1016/j.biomaterials.2007.10.038
Lee S W, Mao C, Flynn C E, et al. Science, 2002, 296(5569):892-895
doi: 10.1126/science.1068054
Nam K T, Kim D W, Yoo P J, et al. Science, 2006, 312(5775):885-888
doi: 10.1126/science.1122716
Lee Y J, Yi H, Kim W J, et al. Science, 2009, 324(5930):1051-1055
Nuraje N, Dang X, Qi J, et al. Adv. Mater., 2012, 24(21):2885-2889
doi: 10.1002/adma.v24.21
Wang G C, Cao R Y, Chen R, et al. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(19):7619-7624
doi: 10.1073/pnas.1300233110
Celiker H, Gore J. Trends Cell Biol., 2013, 23(1):9-15
doi: 10.1016/j.tcb.2012.08.010
Grosberg R K, Strathmann R R. Trends Ecol. Evol., 1998, 13(3):112-116
doi: 10.1016/S0169-5347(97)01313-X
Simpson C. Proc. R. Soc. B, 2012, 279(1726):116-121
doi: 10.1098/rspb.2011.0766
Xiong W, Zhao X H, Zhu G X, et al. Angew. Chem. Int. Ed., 2015, 54(41):11961-11965
doi: 10.1002/anie.201504634
Xiong W, Tang Y M, Shao C Y, et al. Environ. Sci. Technol., 2017, 51(21):12717-12726
doi: 10.1021/acs.est.7b02985
Wei W, Sun P Q, Li Z, et al. Sci. Adv., 2018, 4(2):eaap9253
doi: 10.1126/sciadv.aap9253
Carturan G, Campostrini R, Dire S, et al. J. Mol. Catal., 1989, 57(1):L13-L16
Nassif N, Bouvet O, Rager M N, et al. Nat. Mater., 2002, 1(1):42-44
doi: 10.1038/nmat709
Rooke J C, Léonard A, Sarmento H, et al. J. Mater. Chem., 2008, 18(24):2833-2841
doi: 10.1039/b802705f
Rooke J C, Léonard A, Meunier C F, et al. J. Colloid Interface Sci., 2010, 344(2):348-352
doi: 10.1016/j.jcis.2009.12.053
Wang G C, Wang H J, Zhou H Y, et al. ACS Nano, 2015, 9(1):799-808
doi: 10.1021/nn5063276
Duan P Q, Huang T T, Xiong W, et al. Langmuir, 2017, 33(9):2454-2459
doi: 10.1021/acs.langmuir.6b04421
Johnson P E, Muttil P, MacKenzie D, et al. ACS Nano, 2015, 9(7):6961-6977
doi: 10.1021/acsnano.5b01139
Ma X M, Chen H F, Yang L, et al. Angew. Chem. Int. Ed., 2011, 50(32):7414-7417
doi: 10.1002/anie.v50.32
Senisterra G, Chau I, Vedadi M. Assay Drug Dev. Technol., 2012, 10(2):128-136
doi: 10.1089/adt.2011.0390
Giugliarelli A, Sassi P, Paolantoni M, et al. J. Phys. Chem. B, 2013, 117(9):2645-2652
doi: 10.1021/jp311268x
Neethirajan S, Gordon R, Wang L J. Trends Biotechnol., 2009, 27(8):461-467
doi: 10.1016/j.tibtech.2009.05.002
Gao X P, Zou C Q, Wang L J, et al. J. Plant Nutr., 2005, 27(8):1457-1470
doi: 10.1081/PLN-200025865
Kim S G, Kim K W, Park E W, et al. Phytopathology, 2002, 92(10):1095-1103
doi: 10.1094/PHYTO.2002.92.10.1095
Ko E H, Yoon Y, Park J H, et al. Angew. Chem. Int. Ed., 2013, 52(47):12279-12282
doi: 10.1002/anie.201305081
Chen X F, Fernando G J P, Crichton M L, et al. J. Controlled Release, 2011, 152(3):349-355
doi: 10.1016/j.jconrel.2011.02.026
Braun L T J, Jezek J, Peterson S, et al. Vaccine, 2009, 27(34):4609-4614
doi: 10.1016/j.vaccine.2009.05.069
Schlehuber L D, McFadyen I J, Shu Y, et al. Vaccine, 2011, 29(31):5031-5039
Yang J J, Meng S, Xu L F, et al. Phys. Rev. Lett., 2004, 92(14):1461021-1461024
Mahadevan T S, Garofalini S H. J. Phys. Chem. C, 2008, 112(5):1507-1515
doi: 10.1021/jp076936c
Wang G C, Zhou H Y, Nian Q G, et al. Chem. Sci., 2016, 7(3):1753-1759
doi: 10.1039/C5SC03847B
Zhou H Y, Wang G C, Li X F, et al. Chem. Commun., 2016, 52(38):6447-6450
doi: 10.1039/C6CC02595A
Yang Y L, Wang G C, Zhu G X, et al. Chem. Commun., 2015, 51(41):8705-8707
doi: 10.1039/C5CC01420D
Pisciotta J M, Zou Y J, Baskakov I V. PloS One, 2010, 5(5):e18021
Falkowsky P G. Primary Productivity in the Sea. Berlin/Heidelberg:Springer Science & Business Media, 2013:19
Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16(1):17-26
doi: 10.1002/(ISSN)1616-3028
Waterbury J B, Watson S W, Guillard R R L, et al. Nature, 1979, 277(5694):293-294
doi: 10.1038/277293a0
Paumann M, Regelsberger G, Obinger C, et al. BBA Bioenergetics, 2005, 1707(2/3):231-253
Blankenship R E, Tiede D M, Barber J, et al. Science, 2011, 332(6031):805-809
doi: 10.1126/science.1200165
Chen T H H, Murata N. Curr. Opin. Plant Biol., 2002, 5(3):250-257
doi: 10.1016/S1369-5266(02)00255-8
Kok B. Biochim. Biophys. Acta, 1956, 21(2):234-244
doi: 10.1016/0006-3002(56)90003-8
Powles S B. Annu. Rev. Plant Physiol., 1984, 35(1):15-44
doi: 10.1146/annurev.pp.35.060184.000311
Demmig-Adams B, Adams Ⅲ W W. Annu. Rev. Plant Physiol., 1992, 43(1):599-626
Xiong W, Yang Z, Zhai H L, et al. Chem. Commun., 2013, 49(68):7525-7527
doi: 10.1039/c3cc42766h
Prather M J, McElroy M B, Wofsy S C. Nature, 1984, 312(5991):227-231
doi: 10.1038/312227a0
Staehelin J, Harris N R P, Appenzeller C, et al. Rev. Geophys., 2001, 39(2):231-290
doi: 10.1029/1999RG000059
Cullen J J, Neale P J, Lesser M P. Science, 1992, 258(5082):646-650
doi: 10.1126/science.258.5082.646
Hunter J R, Taylor J H, Moser H G. Photochem. Photobiol., 1979, 29(2):325-338
doi: 10.1111/php.1979.29.issue-2
Wubben D L. J. Plankton Res., 2000, 22(11):2095-2104
doi: 10.1093/plankt/22.11.2095
Quintero-Torres R, Aragón J L, Torres M, et al. Phys. Rev. E, 2006, 74(3):032901
doi: 10.1103/PhysRevE.74.032901
Wang B, Liu P, Tang Y Y, et al. PloS One, 2010, 5(4):e9963
Lockett M R, Lange H, Breiten B, et al. Angew. Chem. Ed. Int., 2013, 125(30):7868-7871
doi: 10.1002/ange.v125.30
Breiten B, Lockett M R, Sherman W, et al. J. Am. Chem. Soc., 2013, 135(41):15579-15584
doi: 10.1021/ja4075776
Wu Z J, Asokan A, Samulski R J. Mol. Ther., 2006, 14(3):316-327
doi: 10.1016/j.ymthe.2006.05.009
Blömer U, Naldini L, Kafri T, et al. J. Virol., 1997, 71(9):6641-6649
Thomas C E, Ehrhardt A, Kay M A. Nat. Rev. Genet., 2003, 4(5):346-358
doi: 10.1038/nrg1066
Wang X Y, Deng Y Q, Shi H Y, et al. Small, 2010, 6(3):351-354
doi: 10.1002/smll.v6:3
Wang X Y, Deng Y Q, Li S H, et al. Adv. Healthcare Mater., 2012, 1(4):443-449
doi: 10.1002/adhm.201200034
Wang X Y, Sun C J, Li P C, et al. Adv. Mater., 2016, 28(4):694-700
doi: 10.1002/adma.201503740
Wang X Y, Deng Y Q, Yang D, et al. Chem. Sci., 2017, 8(12):8240-8246
doi: 10.1039/C7SC03868B
Wang X Y, Yang D, Li S H, et al. Biomaterials, 2016, 106:286-294
doi: 10.1016/j.biomaterials.2016.08.035
Zhou H Y, Wang G C, Wang X Y, et al. Angew. Chem. Int. Ed., 2017, 56(42):12908-12912
Shao C P. N. Engl. J. Med., 2010, 362(5):472-473
doi: 10.1056/NEJMc0909552
Torre L A, Siegel R L, Ward E M, et al. Cancer Epidem. Biomar., 2016, 25(1):16-27
doi: 10.1158/1055-9965.EPI-15-0578
Siegel R L, Miller K D, Jemal A. CA:Cancer J. Clin., 2015, 65(1):5-29
doi: 10.3322/caac.21254
Ahles T A, Saykin A J. Nat. Rev. Cancer, 2007, 7(3):192-201
doi: 10.1038/nrc2073
Noordman B J, Van Lanschot J J B. Nat. Rev. Clin. Oncol., 2015, 12(6):315-316
doi: 10.1038/nrclinonc.2015.91
Nelson H, Sargent D J, Wieand H S, et al. N. Engl. J. Med., 2004, 350(20):2050-2059
doi: 10.1056/NEJMoa032651
Naredi P, La Quaglia M P. Nat. Rev. Clin. Oncol., 2015, 12(7):425-431
doi: 10.1038/nrclinonc.2015.72
Allen T M, Cullis P R. Science, 2004, 303(5665):1818-1822
doi: 10.1126/science.1095833
Peer D, Karp J M, Hong S, et al. Nat. Nanotechnol., 2007, 2(12):751-760
doi: 10.1038/nnano.2007.387
Nel A, Xia T, Mdler L, et al. Science, 2006, 311(5761):622-627
doi: 10.1126/science.1114397
Brannon-Peppas L, Blanchette J O. Adv. Drug Delivery Rev., 2012, 64:206-212
doi: 10.1016/j.addr.2012.09.033
Sharifi S, Behzadi S, Laurent S, et al. Chem. Soc. Rev., 2012, 41(6):2323-2343
doi: 10.1039/C1CS15188F
Low P S, Henne W A, Doorneweerd D D. Acc. Chem. Res., 2007, 41(1):120-129
He W, Wang H, Hartmann L C, et al. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(28):11760-11765
doi: 10.1073/pnas.0703875104
Klibanov A M. Science, 1983, 219(4585):722-727
doi: 10.1126/science.219.4585.722
Schmid A, Dordick J S, Hauer B, et al. Nature, 2001, 409(6817):258-268
doi: 10.1038/35051736
Leon R, Fernandes P, Pinheiro H M, et al. Enzyme Microb. Technol., 1998, 23(7/8):483-500
Pfruender H, Amidjojo M, Kragl U, et al. Angew. Chem. Int. Ed., 2004, 43(34):4529-4531
doi: 10.1002/(ISSN)1521-3773
Chen Z W, Ji H W, Zhao C Q, et al. Angew. Chem. Int. Ed., 2015, 54(16):4904-4908
doi: 10.1002/anie.201412049
Crossley S, Faria J, Shen M, et al. Science, 2010, 327(5961):68-72
doi: 10.1126/science.1180769
Zapata P A, Faria J, Ruiz M P, et al. J. Am. Chem. Soc., 2012, 134(20):8570-8578
doi: 10.1021/ja3015082
Zhou W J, Fang L, Fan Z Y, et al. J. Am. Chem. Soc., 2014, 136(13):4869-4872
doi: 10.1021/ja501019n
Zhang W J, Fu L M, Yang H Q. ChemSusChem, 2014, 7(2):391-396
doi: 10.1002/cssc.201301001
Li W, Liu Z, Liu C Q, et al. Angew. Chem. Int. Ed., 2017, 56(44):13661-13665
doi: 10.1002/anie.201706910
Ragauskas A J, Williams C K, Davison B H, et al. Science, 2006, 311(5760):484-489
doi: 10.1126/science.1114736
Wijffels R H, Barbosa M J. Science, 2010, 329(5993):796-799
doi: 10.1126/science.1189003
Turner J A. Science, 1999, 285(5428):687-689
doi: 10.1126/science.285.5428.687
Bartels J R, Pate M B, Olson N K. Int. J. Hydrogen Energy, 2010, 35(16):8371-8384
doi: 10.1016/j.ijhydene.2010.04.035
Burgess S J, Tamburic B, Zemichael F, et al. Adv. Appl. Microbiol., 2011, 75:71-110
Hemschemeier A, Happe T. BBA Bioenergetics, 2011, 1807(8):919-926
doi: 10.1016/j.bbabio.2011.02.010
Grewe S, Ballottari M, Alcocer M, et al. Plant Cell, 2014, 26(4):1598-1611
doi: 10.1105/tpc.114.124198
Gaffron H, Rubin J. J. Gen. Physiol., 1942, 26(2):219-240
doi: 10.1085/jgp.26.2.219
Stripp S T, Goldet G, Brandmayr C, et al. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(41):17331-17336
doi: 10.1073/pnas.0905343106
Melis A, Zhang L, Forestier M, et al. Plant Physiol., 2000, 122(1):127-136
doi: 10.1104/pp.122.1.127
Ghirardi M L, Zhang L, Lee J W, et al. Trends Biotechnol., 2000, 18(12):506-511
doi: 10.1016/S0167-7799(00)01511-0
Eroglu E, Melis A. Bioresour. Technol., 2011, 102(18):8403-8413
Lesseps R J. Science, 1965, 148(3669):502-503
doi: 10.1126/science.148.3669.502
Humphreys T. Nature, 1970, 228(5272):685-686
doi: 10.1038/228685a0
Gregor T, Fujimoto K, Masaki N, et al. Science, 2010, 328(5981):1021-1025
doi: 10.1126/science.1183415
Discher D E, Janmey P, Wang Y. Science, 2005, 310(5751):1139-1143
doi: 10.1126/science.1116995
Lewis N S. Science, 2016, 351(6271):aad1920
doi: 10.1126/science.aad1920
Luo W J, Yang Z S, Li Z S, et al. Energy Environ. Sci., 2011, 4(10):4046-4051
doi: 10.1039/c1ee01812d
Li Z S, Luo W J, Zhang M L, et al. Energy Environ. Sci., 2013, 6(2):347-370
doi: 10.1039/C2EE22618A
Fujishima A, Honda K. Nature, 1972, 238(5358):37-38
doi: 10.1038/238037a0
Zou Z G, Ye J H, Sayama K, et al. Nature, 2001, 414(6864):625-627
doi: 10.1038/414625a
Meyer T J. Acc. Chem. Res., 1989, 22(5):163-170
doi: 10.1021/ar00161a001
Appel A M, Bercaw J E, Bocarsly A B, et al. Chem. Rev., 2013, 113(8):6621-6658
doi: 10.1021/cr300463y
Tu W, Zhou Y, Zou Z. Adv. Mater., 2014, 26(27):4607-4626
doi: 10.1002/adma.v26.27
Larkum A W D. Curr. Opin. Biotechnol., 2010, 21(3):271-276
doi: 10.1016/j.copbio.2010.03.004
Hawkins A S, McTernan P M, Lian H, et al. Curr. Opin. Biotechnol., 2013, 24(3):376-384
doi: 10.1016/j.copbio.2013.02.017
Rasmussen B, Fletcher I R, Brocks J J, et al. Nature, 2008, 455(7216):1101-1104
doi: 10.1038/nature07381
Kump L R, Barley M E. Nature, 2007, 448(7157):1033-1036
doi: 10.1038/nature06058
Paerl H W, Huisman J. Science, 2008, 320(5872):57-58
doi: 10.1126/science.1155398
Cox P A, Banack S A, Murch S J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(23):13380-13383
doi: 10.1073/pnas.2235808100
Anderson D M, Glibert P M, Burkholder J M. Estuaries, 2002, 25(4):704-726
doi: 10.1007/BF02804901
Smayda T J. Limnol. Oceanogr., 1997, 42(5):1137-1153
Funari E, Testai E. Crit. Rev. Toxicol., 2008, 38(2):97-125
doi: 10.1080/10408440701749454
Qin B Q, Zhu G W, Gao G, et al. Environ. Manage., 2010, 45(1):105-112
Dixon M B, Richard Y, Ho L, et al. Water Sci. Technol., 2011, 63(7):1405-1411
doi: 10.2166/wst.2011.318
Chow C W K, Drikas M, House J, et al. Water Res., 1999, 33(15):3253-3262
doi: 10.1016/S0043-1354(99)00051-2
HU Bi-Yang, ZHAO Lei, ZHOU Wen-Jing, et al. Doctoral Dissertation, 2012, 33(3):138-143
Kardinaal W E A, Visser P M. Dynamics of Cyanobacterial Toxins:Harmful Cyanobacteria Aquatic Ecology Series. Dordrecht:Springer, 2005:41-64
Granéli E. Ecology of Harmful Algae. Berlin:Springer, 2006:189-201
Chorus I, Bartram J. Toxic Cyanobacteria in Water:A Guide to Their Public Health Consequences, Monitoring and Mana-gement. Boca Raton:CRC Press, 1999.
Hildebrand M. Chem. Rev., 2008, 108(11):4855-4874
doi: 10.1021/cr078253z
Villareal T A. Deep Sea Res. Part A, 1988, 35(6):1037-1045
doi: 10.1016/0198-0149(88)90075-1
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
OD600 and OD800 represent absorbance of a UV-Vis spectra at a wavelength of 600 and 800 nm
OmpA represent outermembrane protein A