Citation: ZHANG Hai-Xia, HAN Wang-Kang, ZHANG Feng-Li, HE Wei, GE Fang-Yuan, WANG Ya-Qin, YAN Xiao-Dong, GU Zhi-Guo. Halide Triggered Spin State Switching of Iron(Ⅱ) Tetrahedral Cages[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(11): 2063-2072. doi: 10.11862/CJIC.2018.233 shu

Halide Triggered Spin State Switching of Iron(Ⅱ) Tetrahedral Cages

Figures(6)

  • Three iron(Ⅱ) tetrahedral cages 1~3 with solid state spin-crossover properties were rational constructed.Single crystal X-ray diffraction analysis confirmed the edge-capped capsule, which were assembled from six imidazole Schiff-base ligands and four iron(Ⅱ) ions.The metal centers occupy the vertices and each linker situates at the edges of the tetrahedron.The inner cavities of these cages are surrounded by imidazole groups, while the periphery is decorated by substituted phenyl rings.One of the counter anions is encapsulated at the central cavities and shows strong anion binding interactions with the cages.Interestingly, the iron(Ⅱ) cages in solution can change their spin states from low-spin (LS) to high-spin (HS) upon addition of halide, since tremendous change of solution color and absorption intensity of characteristic broad absorption MLCT bands when addition of halide (Cl- and Br-) to the CH3CN solution of the cages.
  • 加载中
    1. [1]

    2. [2]

      (a) Khusniyarov M M.Chem. Eur. J., 2016, 22: 15178-15191
      (b)Guionneau P.Dalton. Trans., 2014, 43: 382-393
      (c)Kahn O, Martinez C J.Scienc., 1998, 279: 44-48
      (d)Rosner B, Milek M, Witt A, et al.Angew. Chem. Int. Ed., 2015, 54: 12976-12980
      (e)Zenere K A, Duyker S G, Trzop E, et al.Chem. Sci., 2018, 9(25): 5623-5629

    3. [3]

      (a) Samanta S, Demesko S, Dechert S, et al.Angew. Chem. Int. Ed., 2015, 54: 583-587
      (b)Dommaschk M, Schutt C, Venkataramani S, et al.Dalton. Trans., 2014, 43: 17395-17405

    4. [4]

      (a) Shores M P, Klug C M, Fiedler S R.Spin-Crossover Materials: Properties and Applications. Halcrow M A Ed., Oxford: Wiley-Blackwel., 2013: 281-301
      (b)Weber B, Walker F A.Inorg. Chem., 2007, 46: 6794-6803

    5. [5]

      (a) Hasegawa Y, Kume S, Nishihara H.Dalton. Trans., 2009, 2: 280-284
      (b)Heitmann G, Schütt C, Herges R.Eur. J. Org. Chem., 2016, 22: 3817-3823
      (c)Venkataramani S, Jana U, Dommaschk M, et al.Scienc., 2011, 331: 445-448
      (d)Thies S, Sell H, Schütt C, et al.J. Am. Chem. Soc., 2011, 133: 16243-16250

    6. [6]

      (a) Schmitz M, Seibel M, Kelm H, et al.Angew. Chem. Int. Ed., 2014, 53: 5988-5992
      (b)Wilson R K, Brooker S.Dalton. Trans., 2013, 42: 12075-12078
      (c)Miller J S, Min K S.Angew. Chem. Int. Ed., 2009, 48: 262-272

    7. [7]

      (a) Young M C, Liew E, Ashby J, et al.Chem. Commun., 2013, 49: 6331-6333
      (b)Ono K, Yoshizawa M, Akita M, et al.J. Am. Chem. Soc., 2009, 131: 2782-2783
      (c)Ni Z, Shores M P.J. Am. Chem. Soc., 2009, 131: 32-33
      (d)Ni Z, McDaniel A M, Shores M P.Chem. Sci., 2010, 1: 615-621
      (e)Ni Z, Shores M P.Inorg. Chem., 2010, 49: 10727-10735

    8. [8]

      (a) Rissanen K.Chem. Soc. Rev., 2017, 46: 2638-2648
      (b)Zarra S, Wood D M, Roberts D A, et al.Chem. Soc. Rev., 2015, 44: 419-432
      (c)Ahmad N, Younus HA, Chughtai A H, et al.Chem. Soc. Rev., 2015, 44: 9-25
      (d)Ramsay W J, Ronson T K, Clegg J K, et al.Angew. Chem. Int. Ed., 2013, 52: 13439-13443
      (e)Ward M D, Hunter C A, Williams N H.Chem. Lett., 2017, 46: 2-9
      (f)Metherell A J, Cullen W, Williams N H, et al.Chem. Eur. J., 2018, 24: 1554-1560

    9. [9]

      (a) Struch N, Bannwarth C, Ronson T K, et al.Angew. Chem. Int. Ed., 2017, 56: 4930-4935
      (b)Bilbeisi R A, Zarra S, Feltham H L, et al.Chem. Eur. J., 2013, 19: 8058-8062

    10. [10]

      (a) Ren D H, Qiu D, Pang C Y, et al.Chem. Commun., 2015, 51: 788-791
      (b)Zhang F L, Chen Q J, Qin L F, et al.Chem. Commun., 2016, 52: 4796-4799

    11. [11]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    12. [12]

      Sheldrick G M.SADABS, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    13. [13]

      Sheldrick G M.SHELXTL-97, University of G?ttingen, G?ttingen, Germany, 1997.

    14. [14]

      van der Sluis P, Spek A L. Acta Crystallogr. Sect. A:Found. Crystallogr., 1990, A46:194-201
       

    15. [15]

      Spek A L. Acta Crystallogr. Sect. D:Biol. Crystallogr., 2009, D65:148-155

    16. [16]

      Brooker S. Chem. Soc. Rev., 2015, 44:2880-2892  doi: 10.1039/C4CS00376D

    17. [17]

      Paul R L, Argent S P, Jeffery J C, et al. Dalton. Trans., 2004, 21:3453-3458

    18. [18]

      (a) Vostrikova K E, Luneau D, Wemsdorfer W, et al.J. Am. Chem. Soc., 2000, 122: 718-719
      (b)Liu Y C, Hua S A, Cheng M C, et al.Chem. Eur. J., DOI: 10.1002/chem.201801325

    19. [19]

      (a) Luo Y H, Nihei M, Wen G J, et al.Inorg. Chem., 2016, 55: 8147-8152
      (b)Nemec I, Herchel R, Travnicek Z.Dalton. Trans., 2015, 44: 4474-4484

    20. [20]

      Darawsheh M, Barrios L A, Roubeau O, et al. Chem. Eur. J., 2016, 22:8635-8645  doi: 10.1002/chem.v22.25

    21. [21]

      Mooibroek T J, Gamez P. CrystEngComm, 2013, 15:1802-1805  doi: 10.1039/c2ce26853a

  • 加载中
    1. [1]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    2. [2]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    3. [3]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    6. [6]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    7. [7]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    8. [8]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    9. [9]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    10. [10]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

    11. [11]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    12. [12]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    13. [13]

      Mufan CaoLong PanYaping WangXianwei SuiXiong Xiong LiuShengfa FengPengcheng YuanMin GaoJiacheng LiuSong-Zhu Kure-ChuTakehiko HiharaYang ZhouZheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    16. [16]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    17. [17]

      Yujuan ZhouKecheng Jie . Conformationally adaptive metal–organic cages for dynamic guest encapsulation. Chinese Chemical Letters, 2025, 36(6): 111007-. doi: 10.1016/j.cclet.2025.111007

    18. [18]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    19. [19]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    20. [20]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

Metrics
  • PDF Downloads(1)
  • Abstract views(474)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return