Effect on Hydrogen Generation of Microstructures of Refined Si Powders in KOH Aqueous Solution
- Corresponding author: WU Chao-Ling, wmeimeiw07@163.com
Citation:
LIAO Jian, WU Chao-Ling, CHEN Yun-Gui, ZHONG Shuang, LIAO Qian-Cheng, CUI Li-Yao. Effect on Hydrogen Generation of Microstructures of Refined Si Powders in KOH Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry,
;2018, 34(8): 1555-1565.
doi:
10.11862/CJIC.2018.175
Muir S S, Yao X. Int. J. Hydrogen Energy, 2011, 36:5983-5997
doi: 10.1016/j.ijhydene.2011.02.032
Jain I P, Lal C, Jain A. Int. J. Hydrogen Energy, 2010, 35:5133-5144
doi: 10.1016/j.ijhydene.2009.08.088
Hardman S, Chandan A, Steinberger-Wilckens R. J. Power Sources, 2015, 287:297-306
doi: 10.1016/j.jpowsour.2015.04.056
Zhang X, Chan S H, Ho H K, et al. Int. J. Hydrogen Energy, 2015, 40:6866-6919
doi: 10.1016/j.ijhydene.2015.03.133
Tayeh T, Awad A S, Nakhl M, et al. Int. J. Hydrogen Energy, 2014, 39:3109-3117
doi: 10.1016/j.ijhydene.2013.12.082
Xu Y M, Wu C L, Chen Y G, et al. J. Power Sources, 2014, 261:7-13
doi: 10.1016/j.jpowsour.2014.03.038
Liu Y G, Wang X H, Liu H Z, et al. J. Energy, 2014, 68:548-554
doi: 10.1016/j.energy.2014.01.005
Dai H B, Ma G L, Xia H J, et al. Energy Environ. Sci., 2011, 4:2206-2212
doi: 10.1039/c1ee00014d
Chen Y K, Teng H T, Lee T Y, et al. Int. J. Energ. Environ. Eng., 2014, 5:1-6
doi: 10.1186/2251-6832-5-1
Si T Z, Han L, Li Y T, et al. Int. J. Hydrogen Energy, 2014, 39:11867-11872
doi: 10.1016/j.ijhydene.2014.06.021
Tegel M, Schne S, Kieback B, et al. Int. J. Hydrogen Energy, 2017, 42:2167-2176
doi: 10.1016/j.ijhydene.2016.09.084
Liu P P, Wu H W, Wu C L, et al. Int. J. Hydrogen Energy, 2015, 40:3806-3812
doi: 10.1016/j.ijhydene.2015.01.105
Li J F, Liu P P, Wu C L, et al. Int. J. Hydrogen Energy, 2016, 42:1429-1435
Demirci U B, Akdim O, Miele P. Int. J. Hydrogen Energy, 2009, 34(6):2638-2645
doi: 10.1016/j.ijhydene.2009.01.038
Litvinenko S, Alekseev S, Lysenko V, et al. Int. J. Hydrogen Energy, 2010, 35:6773-6778
doi: 10.1016/j.ijhydene.2010.04.041
Goller B, Kovalev D, Sreseli O. Nanotechnology, 2011, 22:305-402
Erogbogbo F, Lin T, Tucciarone P M, et al. Nano Lett., 2013, 13:451-456
doi: 10.1021/nl304680w
Kale P, Gangal A C, Edla R, et al. Int. J. Hydrogen Energy, 2012, 37:3741-3747
doi: 10.1016/j.ijhydene.2011.04.054
Zhan C Y, Chu P K, Ren D, et al. Int. J. Hydrogen Energy, 2011, 36:4513-4517
doi: 10.1016/j.ijhydene.2011.01.003
Weast R C. CRC Handbook of Chemistry and Physics. 1st Student Ed. Boca Raton:CRC Press, 1988:69
Earnshaw A, Greenwood N. Chemistry of the Elements. 2nd Ed. Oxford:Butterworth-Heinemann, 1997:122
Auner N, Holl S. Energy, 2006, 31:1395-1402
doi: 10.1016/j.energy.2005.12.001
Ilyukhina A V, Kravchenko O V, Bulychev B M, et al. Int. J. Hydrogen Energy, 2010, 35:1905-1910
doi: 10.1016/j.ijhydene.2009.12.118
Fan M Q, Sun L X, Xu F. Energy Convers. Manage., 2010, 51:594-599
doi: 10.1016/j.enconman.2009.11.005
Fan M Q, Sun L X, Xu F. Energy, 2010, 35:1333-1337
doi: 10.1016/j.energy.2009.11.016
Ouyang L Z, Huang J M, Wang H, et al. Int. J. Hydrogen Energy, 2013, 38:2973-2978
doi: 10.1016/j.ijhydene.2012.12.092
Huang M H, Ouyang L Z, Ye J S, et al. J. Mater. Chem. A, 2017, 5:8566-8575
doi: 10.1039/C7TA02457F
Wang C P, Yang T, Liu Y H, et al. Int. J. Hydrogen Energy, 2014, 39:10843-10852
doi: 10.1016/j.ijhydene.2014.05.047
Grosjean M H, Zidoune M, Roué L, et al. Int. J. Hydrogen Energy, 2006, 31:109-119
doi: 10.1016/j.ijhydene.2005.01.001
Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energy, 2007, 32:2809-2815
doi: 10.1016/j.ijhydene.2006.12.020
Razavi-Tousi S S, Szpunar J A. Int. J. Hydrogen Energy, 2013, 38:795-806
doi: 10.1016/j.ijhydene.2012.10.106
Wang H W, Chung H W, Teng H T, et al. Int. J. Hydrogen Energy, 2011, 36:15136-15144
doi: 10.1016/j.ijhydene.2011.08.077
Xu L, Ashraf S, Hu J P, et al. Int. J. Hydrogen Energy, 2016, 41:12730-112737
doi: 10.1016/j.ijhydene.2016.05.181
Brack P, Dann S E, Wijayantha K G U, et al. Int. J. Energy Res., 2017, 41(12):1740-1748
doi: 10.1002/er.v41.12
Suryanarayana C. Prog. Mater. Sci., 2001, 46:11-39
XIAO Jun, PAN Jing, LIU Xing-Cai. Magnetic Materials and Devices, 2005, 36:6-7
Gaffet E, Harmelin M. J. Less-Common Met., 1990, 157:201-222
doi: 10.1016/0022-5088(90)90176-K
Stephen R G, Riley F L. J. Eur. Ceram. Soc., 1989, 5:219-222
doi: 10.1016/S0955-2219(89)80003-2
Yoo H S, Ryu H Y, Cho S S, et al. Int. J. Hydrogen Energy, 2011, 36(23):15111-15118
doi: 10.1016/j.ijhydene.2011.08.061
Zhao Z W, Chen X Y, Hao M M. Energy, 2011, 36:2782-2787
doi: 10.1016/j.energy.2011.02.018
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467