Research of Dye-Sensitized Solar Cells Based on p-Type Photoelectrode
- Corresponding author: GUO Xue-Yi, xyguo@csu.edu.cn
Citation:
YANG Ying, PAN De-Qun, GAO Jing, ZHANG Zheng, GUO Xue-Yi. Research of Dye-Sensitized Solar Cells Based on p-Type Photoelectrode[J]. Chinese Journal of Inorganic Chemistry,
;2018, 34(4): 615-626.
doi:
10.11862/CJIC.2018.100
O'Regan B, Grätzel M. Nature, 1991, 353(6346):737-740
doi: 10.1038/353737a0
Grätzel M. Nature, 2001, 414(6861):338-344
doi: 10.1038/35104607
Yella A, Lee H W, Tsao H N, et al. Science, 2011, 334(6056):629-634
doi: 10.1126/science.1209688
Kakiage K, Aoyama Y, Yano T, et al. Chem. Commun., 2014, 50(48):6379-6381
doi: 10.1039/c4cc02192d
Xie Y S, Tang Y Y, Wu W J, et al. J. Am. Chem. Soc., 2015, 137(44):14055-14058
doi: 10.1021/jacs.5b09665
Mathew S, Yella A, Gao P, et al. Nat. Chem., 2014, 6(3):242-247
doi: 10.1038/nchem.1861
Ozawa H, Yu O, Arakawa H. ChemPhysChem, 2014, 15(6):1201-1206
doi: 10.1002/cphc.201301025
Kakiage K, Aoyama Y, Yano T, et al. Chem. Commun., 2015, 51(29):6315-6317
doi: 10.1039/C5CC00464K
Kakiage K, Aoyama Y, Yano T, et al. Chem. Commun., 2015, 51(88):15894-15897
doi: 10.1039/C5CC06759F
Guo X Y, Yi P F, Yang Y, et al. Electrochim. Acta, 2013, 90:524-529
doi: 10.1016/j.electacta.2012.12.028
Yang Y, Zhang Z, Gao J, et al. J. Alloys Compd., 2017, 726:1286-1294
doi: 10.1016/j.jallcom.2017.07.263
Yang Y, Yi P F, Zhou C H, et al. J. Power Sources, 2013, 243:919-924
doi: 10.1016/j.jpowsour.2013.06.064
Yang Y, Gao J, Yi P F. Solid State Ionics, 2015, 279:1-5
doi: 10.1016/j.ssi.2015.07.004
Sumikura S, Mori S, Shimizu S, et al. J. Photochem. Photobiol., A, 2008, 199(1):1-7
doi: 10.1016/j.jphotochem.2008.04.007
Gao J, Yang Y, Zhang Z, et al. Nano Energy, 2016, 26:123-130
doi: 10.1016/j.nanoen.2016.05.010
Yang Y, Gao J, Zhang Z, et al. Adv. Mater., 2016, 28(40):8937-8944
doi: 10.1002/adma.v28.40
Bhagavathi A M, Elumalai V, Vlachopoulos N, et al. Phys. Chem. Chem. Phys., 2013, 15(40):17419-17425
doi: 10.1039/c3cp52869c
Wang X, Kulkarni S A, Ito B I, et al. ACS Appl. Mater. Interfaces, 2013, 5(2):444-450
doi: 10.1021/am3025454
Hagfeldt A, Boschloo G, Sun L C, et al. Chem. Rev., 2010, 110(11):6595-6663
doi: 10.1021/cr900356p
He J J, Lindstrm H, Hagfeldt A, et al. Sol. Energy Mater. Sol. Cells, 2000, 62(3):265-273
doi: 10.1016/S0927-0248(99)00168-3
Nattestad A, Perera I, Spiccia L. J. Photochem. Photobiol., C, 2016, 28:44-71
doi: 10.1016/j.jphotochemrev.2016.06.003
Farre Y, Raissi M, Fihey A, et al. ChemSusChem, 2017, 10:2618-2625
doi: 10.1002/cssc.v10.12
Grtzel M. J. Photochem. Photobiol., C, 2003, 4:145-153
doi: 10.1016/S1389-5567(03)00026-1
He J J, Lindstrm H, Hagfeldt A, et al. J. Phys. Chem. B, 1999, 103(42):8940-8943
doi: 10.1021/jp991681r
Odobel F, Le P L, Pellegrin Y, et al. Acc. Chem. Res., 2010, 43(8):1063-1071
doi: 10.1021/ar900275b
Odobel F, Pellegrin Y. J. Phys. Chem. Lett., 2013, 4(15):2551-2564
doi: 10.1021/jz400861v
Odobel F, Pellegrin Y, Gibson E A, et al. Coord. Chem. Rev., 2012, 256(21/22):2414-2423
Ji Z Q, He M F, Huang Z J, et al. J. Am. Chem. Soc., 2013, 135(32):11696-11699
doi: 10.1021/ja404525e
Dini D, Halpin Y, Vos J G, et al. Coord. Chem. Rev., 2015, 304:179-201
Gibson E A, Smeigh A L, Le Pleux L, et al. Angew. Chem. Int. Ed., 2009, 48(24):4402-4405
doi: 10.1002/anie.v48:24
Zhang X L, Zhang Z P, Huang F Z, et al. J. Mater. Chem., 2012, 22(14):7005-7019
doi: 10.1039/c2jm16264d
Du S S, Cheng P F, Sun P, et al. Chem. Res. Chin. Univ., 2014, 30(4):661-665
doi: 10.1007/s40242-014-4020-3
Yu M, Natu G, Ji Z, et al. J. Phys. Chem. Lett., 2012, 3(9):1074-1078
doi: 10.1021/jz3003603
Renaud A, Chavillon B, Pleux L L, et al. J. Mater. Chem., 2012, 22(29):14353-14356
doi: 10.1039/c2jm31908j
Srinivasan R, Chavillon B, Doussierbrochard C, et al. J. Mater. Chem., 2008, 18(46):5647-5653
doi: 10.1039/b810064k
Perera I R, Daeneke T, Makuta S, et al. Angew. Chem. Int. Ed., 2015, 54(12):3758-3762
doi: 10.1002/anie.201409877
Bai J, Xu X B, Xu L, et al. ChemSusChem, 2013, 6(4):622-629
doi: 10.1002/cssc.201200935
Li L, Gibson E A, Qin P, et al. Adv. Mater., 2010, 22(15):1759-1762
doi: 10.1002/adma.v22:15
Powar S, Wu Q, Weidelener M, et al. Energy Environ. Sci., 2012, 5(10):8896-8900
doi: 10.1039/c2ee22127f
Nattestad A, Zhang X L, Bach U, et al. J. Photonics Energy, 2011, 1:1-9
Wei L F, Jiang L P, Yuan S, et al. Electrochim. Acta, 2016, 188:309-316
doi: 10.1016/j.electacta.2015.12.026
Ursu D, Vaszilcsin N, Bnica R, et al. J. Mater. Eng. Perform., 2016, 25(1):59-63
doi: 10.1007/s11665-015-1814-5
Zarnnotti M, Wood C J, Summers G H, et al. ACS Appl. Mater. Interfaces, 2015, 7:27580-27589
doi: 10.1021/acsami.5b11127
Ho P, Bao L Q, Ahn K S, et al. Synth. Met., 2016, 217:314-321
doi: 10.1016/j.synthmet.2016.04.006
Ho P, Bao L Q, Cheruku R, et al. Electron. Mater. Lett., 2016, 12(5):1-7
Liu Q, Wei L, Yuan S, et al. J. Mater. Sci., 2015, 50(20):6668-6676
doi: 10.1007/s10853-015-9221-8
Yu M Z, Draskovic T I, Wu Y Y. Phys. Chem. Chem. Phys., 2014, 16(11):5026-5033
doi: 10.1039/c3cp55457k
Brisse R, Faddoul R, Bourgeteau T, et al. ACS Appl. Mater. Interfaces, 2017, 9:2369-2377
doi: 10.1021/acsami.6b12912
Yu Y, Li X, Shen Z J, et al. J. Colloid Interface Sci., 2017, 490:380-390
doi: 10.1016/j.jcis.2016.11.037
Ahmed J, Blakely C K, Prakash J, et al. J. Alloys Compd., 2014, 591:275-279
doi: 10.1016/j.jallcom.2013.12.199
Shi Z, Lu H, Liu Q, et al. Energy Technol., 2014, 2(6):517-521
doi: 10.1002/ente.v2.6
Jiang T F, Bujolidoeuff M, Farre Y, et al. RSC Adv., 2016, 6(114):112765-112770
doi: 10.1039/C6RA17879K
Zhu T, Deng Z H, Fang X D, et al. J. Alloys Compd., 2016, 685:836-840
doi: 10.1016/j.jallcom.2016.06.231
Xiong D H, Zhang Q Q, Verma S K, et al. J. Alloys Compd., 2016, 622:374-380
Qin P, Linder M, Brinck T, et al. Adv. Mater., 2009, 21(29):2993-2996
doi: 10.1002/adma.v21:29
Morandeira A, Boschloo G, Hagfeldt A, et al. J. Phys. Chem. C, 2008, 112(25):9530-9537
doi: 10.1021/jp800760q
Nattestad A, Mozer A J, Fischer M K R, et al. Nat. Mater., 2010, 9:31-35
doi: 10.1038/nmat2588
Click K A, Beauchamp D R, Garrett B R, et al. Phys. Chem. Chem. Phys., 2014, 16(47):26103-26111
doi: 10.1039/C4CP04010D
Zhang Q Q, Jiang, K J, Huang J H, et al. J. Mater. Chem. A, 2015, 3(15):7695-7698
doi: 10.1039/C5TA01348H
Cui J, Lu J, Xu X B, et al. J. Phys. Chem. C, 2015, 118(30):16433-16440
Favereau L, Warnan J, Pellegrin Y, et al. Chem. Commun., 2013, 49(73):8018-8020
doi: 10.1039/c3cc44232b
Lefebvre J F, Sun X Z, Calladine J A, et al. Chem. Commun., 2013, 50(40):5258-5260
Qin P, Zhu H, Edvinsson T, et al. J. Am. Chem. Soc., 2010, 130(27):8570-8571
Sheibani E, Zhang L, Liu P, et al. RSC Adv., 2016, 6(22):18165-18177
doi: 10.1039/C5RA26310G
Lyu S, Farre Y, Ducasse L, et al. RSC Adv., 2016, 6(24):19928-19936
doi: 10.1039/C5RA25899E
Summers G H, Lefebvre J F, Black F A, et al. Phys. Chem. Chem. Phys., 2016, 18(4):3358-3360
doi: 10.1039/C5CP90228B
Chang C H, Chen Y C, Hsu C Y, et al. Org. Lett., 2012, 14(18):4726-4729
doi: 10.1021/ol301860w
Marcello G, Florent L, Lei Z, et al. J. Phys. Chem. Lett., 2014, 5(13):2254-2258
doi: 10.1021/jz5009714
Qu J, Ren Y R, Cheng J, et al. Int. J. Electrochem. Sci., 2016, 11:7553-7561
Peng Q, Wiberg J, Gibson E, et al. J. Phys. Chem. C, 2010, 114(10):4738-4748
doi: 10.1021/jp911091n
Wood C J, Cheng M, Clark C A, et al. J. Phys. Chem. C, 2014, 118(30):16536-16546
doi: 10.1021/jp4119937
Zhang X L, Zhang Z, Chen D, et al. Chem. Commun., 2012, 48(79):9885-9887
doi: 10.1039/c2cc35018a
Pleux L L, Smeigh A L, Gibson E, et al. Energy Environ. Sci., 2011, 4(6):2075-2084
doi: 10.1039/c1ee01148k
Lepleux L, Chavillon B, Pellegrin Y, et al. Inorg. Chem., 2009, 48(17):8245-8250
doi: 10.1021/ic900866g
Ji Z, Natu G, Huang Z J, et al. J. Phys. Chem. C, 2012, 116(32):16854-16863
doi: 10.1021/jp303909x
Maufroy A, Favereau L, Anne F B, et al. J. Mater. Chem. A, 2015, 3(7):3908-3917
doi: 10.1039/C4TA05974C
Marinakis N, Willgert M, Constable E C, et al. Sustainable Energy Fuels, 2017, 1(3):626-635
doi: 10.1039/C7SE00060J
Gibson E A, Smeigh A L, Pleux L L, et al. J. Phys. Chem. C, 2011, 115(9):9772-9779
Boschloo G, Hagfeldt A. Acc. Chem. Res., 2010, 42(11):1819-1826
Boschloo G, Gibson E A, Hagfeldt A. J. Phys. Chem. Lett., 2011, 2(24):3016-3020
doi: 10.1021/jz2014314
Powar S, Daeneke T, Ma M T, et al. Angew. Chem. Int. Ed., 2013, 52(2):602-605
doi: 10.1002/anie.201206219
Xu X B, Zhang B Y, Cui J, et al. Nanoscale, 2013, 5(17):7963-7969
doi: 10.1039/c3nr02169f
Liu H Z, Xiang W C, Tao H Z. J. Photochem. Photobiol., A, 2017, 344:199-205
doi: 10.1016/j.jphotochem.2017.05.019
Powar S, Bhargava R, Daeneke T, et al. Electrochim. Acta, 2015, 182:458-463
doi: 10.1016/j.electacta.2015.09.026
Fujishima A, Zhang X, Tryk D A. Surf. Sci. Rep., 2008, 63(12):515-582
doi: 10.1016/j.surfrep.2008.10.001
Zhang Q F, Dandeneau C S, Zhou X Y, et al. Adv. Mater., 2009, 21(41):4087-4108
doi: 10.1002/adma.v21:41
Chappel S, Zaban A. Sol. Energy Mater. Sol. Cells, 2002, 71(2):141-152
doi: 10.1016/S0927-0248(01)00050-2
Le Viet A, Jose R, Reddy M V, et al. J. Phys. Chem. C, 2016, 114(49):21795-21800
Renaud A, Chavillon B, Cari, L J, et al. J. Phys. Chem. C, 2016, 117(44):22478-22483
Wood C J, Summers G H, Clark C, et al. Phys. Chem. Chem. Phys., 2015, 18(16):10727-10738
Langmar O, Ganivet C R, Lennert A, et al. Angew. Chem. Int. Ed., 2015, 54(26):7688-7692
doi: 10.1002/anie.201501550
Sumikura S, Mori S, Shimizu S, et al. J. Photochem. Photobiol., A, 2008, 194(2/3):143-147
Xiong D H, Xu Z, Zeng X W, et al. J. Mater. Chem., 2012, 22(47):24760-24768
doi: 10.1039/c2jm35101c
Nakasa A, Usami H, Sumikura S, et al. Chem. Lett., 2005, 34(4):500-501
doi: 10.1246/cl.2005.500
Wood C J, Summers G H, Gibson E A. Chem. Commun., 2015, 51(18):3915-3918
doi: 10.1039/C4CC10230D
Shao Z P, Pan X, Chen H W, et al. Energy Environ. Sci., 2014, 7(8):2647-2651
doi: 10.1039/C4EE01315H
Yong H L, Ji Y P, Thogiti S, et al. Electron. Mater. Lett., 2016, 12(4):524-529
doi: 10.1007/s13391-016-4017-9
Guo X Y, Gao J, Zhang Z, et al. Mater. Today Energy, 2017, 5:320-330
doi: 10.1016/j.mtener.2017.07.013
Zhang Z, Yang Y, Gao J, et al. Mater. Today Energy, 2018, 7:27-36
doi: 10.1016/j.mtener.2017.11.005
Choi H, Hwang T, Lee S, et al. J. Power Sources, 2015, 274:937-942
doi: 10.1016/j.jpowsour.2014.10.125
Click K A, Schockman B M, Dilenschneider J T, et al. Phys. Chem. C, 2017, 121:8787-8795
doi: 10.1021/acs.jpcc.7b01911
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
Binbin Liu , Yang Chen , Tianci Jia , Chen Chen , Zhanghao Wu , Yuhui Liu , Yuhang Zhai , Tianshu Ma , Changlei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Zhenhuan Wang , Weifei Wei , Ruijie Ma , Dou Luo , Zhanxiang Chen , Jun Zhang , Liyang Yu , Gang Li , Zhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182
Xiaotian Hu , Binhuan Qiu , Jinglin Le , Runrui Dai , Xiaolan Lü , Yu Hu . Digital Design, Computational Modeling, Fabrication and Characterization of Organic Solar Cells Based on Green Energy Principles. University Chemistry, 2026, 41(1): 298-309. doi: 10.12461/PKU.DXHX202506034
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
Shantao Zhang , TianAo Hou , Yandong Wang , Zhimin Fang , Yu Wu , Haolin Wang , Tao Chen , Shuang Chen , Wenhua Zhang , Shengzhong (Frank) Liu , Shangfeng Yang . π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells. Acta Physico-Chimica Sinica, 2026, 42(3): 100194-0. doi: 10.1016/j.actphy.2025.100194
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
Zhen FAN , Jiayan WANG , Wenhao ZHU , Xiuchun ZHANG , Yang WANG , Hao LI , Zeyuan WANG , Songzhi ZHENG , Weihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191
TiO2 CB and NiO VB represent the Fermi level in the conduction band of TiO2 and the valence band of the NiO, respectively; N and N', P and P' represent the energetics of the sensitizers; CoⅡ/CoⅢ represents the redox potential of the electrolyte[30]
VB=valence band, D=dye