Citation: SONG Heng-Xu, NIU Yong-Qiang, HOU Hua, WU Zhu, ZHAO Yu-Hong. Development and Prospect of Oxide Cathode Materials for High Temperature Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(12): 2155-2168. doi: 10.11862/CJIC.2017.263 shu

Development and Prospect of Oxide Cathode Materials for High Temperature Lithium Batteries

  • Corresponding author: ZHAO Yu-Hong, zhaoyuhong@nuc.edu.cn
  • Received Date: 24 July 2017
    Revised Date: 10 September 2017

Figures(15)

  • High temperature lithium battery is the development of low temperature applications of thermal batteries, and has large potential development and utilization in the oil/gas and geothermal field. Compared with the lithium alloy anode materials with large specific capacity and close to the pure lithium electrode potential, the cathode materials are pivotal section of high temperature lithium battery and have large potential space. In the cathode materials, the oxide materials exhibit high voltage characteristics and high thermal stability, and the high-temperature lithium battery can be miniaturized to meet the current voltage supply under the specific conditions. However, there is no systematic overview about the oxide of high-temperature lithium battery currently. In order to make more development in this field and promote the optimal adjustment of energy structure, this paper introduces and summarizes the transition metal oxides used in high-temperature lithium battery, including physical properties, electrochemical properties and synthesis or preparation methods. We describe the excellent properties of various oxide materials in detail, and point out the shortcomings and the existing problems of the material. Moreover, this paper predicts the development of oxide cathode materials, and demonstrates the future direction of development and the work to be done. We hope that this work can provide some reference for the relevant researchers.
  • 加载中
    1. [1]

      Guidotti R A, Masset P. J. Power Sources, 2006, 161(2):1443-1449  doi: 10.1016/j.jpowsour.2006.06.013

    2. [2]

      ZHAO Guang-Bo, XU Ying, BIAN Ji-Qing, et al. Journal of Detection & Control, 2008, 30(6):64-68

    3. [3]

      ZHANG Chun-Xiao, MU Shi-Bo. Chin. J. Power Sources, 2010, 34(6):614-615

    4. [4]

      Guidotti R A. 35th Intersociety Energy Conversion Engineering Conference and Exhibit:Vol.2. New York:IEEE, 2000:1276-1286

    5. [5]

      LU Rui-Sheng, LIU Xiao-Jiang. Thermal Batteries. Beijing:National Defense Industry Press, 2005.

    6. [6]

      Masset P J, Guidotti R A. J. Power Sources, 2008, 177(2):595-609  doi: 10.1016/j.jpowsour.2007.11.017

    7. [7]

      WANG Zhen-Jie. Thesis for the Doctorate of Univ-ersity of Chinese Academy of Sciences. 2014.

    8. [8]

      Wang Z J, Du J L, Li Z L, et al. Asian J. Chem., 2014, 26(23):7939-7942  doi: 10.14233/ajchem

    9. [9]

      Masset P J, Guidotti R A. J. Power Sources, 2008, 178(1):456-466  doi: 10.1016/j.jpowsour.2007.11.073

    10. [10]

      Guidotti R A, Reinhardt F W, Tallant D R, et al. Evolution, 1984, 62(3):531-548

    11. [11]

      Clark R P, Goldsmith H J, Blucher R L. J. Chem. Eng. Data, 2002, 15(2):277-280

    12. [12]

      Guidotti R A, Reinhardt F W. 38th Power Sources Conference. Albuquerque:Sandia National Laboratories, 2000:211-226

    13. [13]

      Mcmanis G E, Miles M H, Fletcher A N. J. Power Sources, 1985, 16(4):243-251  doi: 10.1016/0378-7753(85)80089-6

    14. [14]

      Guidotti R A, Reinhardt F W. Proceedings of the International Symposium. Trulove P. C Ed., Albuquerque:Sandia National Laboratories, 1999:451-460

    15. [15]

      Giwa C O. Materials Science Forum:Vols.73-75. Chemla M, Devilliers D Ed., Zurich:Trans Tech Publication Ltd., 1991:699-706

    16. [16]

      Guidotti R A, Reinhardt F W. 201st Electrochemical Society Meeting. Albuquerque:Sandia National Laboratories, 2002.

    17. [17]

      Soofivand F, Mohandes F, Salavati-Niasari M. Micro Nano Lett., 2012, 7(3):283-286  doi: 10.1049/mnl.2012.0042

    18. [18]

      ZHOU Wen-Min, HUANG Jian-Feng, LI Jia-Yin, et al. J. Synth. Cryst., 2015, 44(4):954-960

    19. [19]

      Xu D, Cao S, Zhang J, et al. Beilstein J. Nanotechnol., 2014, 5(5):658-666

    20. [20]

      Liu J K, Luo C X, Quan N J. J. Nanopart. Res., 2007, 10(3):531-535

    21. [21]

      Liu Y, Yu H, Cai M, et al. Catal. Commun., 2012, 26(35):63-67

    22. [22]

      ZHANG Meng-Xiong, ZHANG You-Xiang. Chinese J. Inorg. Chem., 2012, 28(10):2065-2070
       

    23. [23]

      XIA Yu-Dan, SONG Hui, YANG Bin. Guizhou Chemical Industry, 2011, 36(4):17-18

    24. [24]

      ZHANG Yun-Hua. Guangdong Chemical Industry, 2006, 33(4):77-79

    25. [25]

      Wadsley A D. Acta Crystallogr., 1957, 10(4):261-267  doi: 10.1107/S0365110X57000821

    26. [26]

      Dai J, Li S F Y, Gao Z, et al. J. Electrochem. Soc., 1998, 145(9):3057-3062  doi: 10.1149/1.1838763

    27. [27]

      LI Zhi-You, HUANG Bo-Yun, TANG Chun -Feng, et al. Materials Science and Engineering of Powder Metallurgy, 2000, 32(1):181-183

    28. [28]

      CAO Du-Meng. Thesis for the Doctorate of Central South University. 2006.

    29. [29]

      LI Zhi-You, CAO Du-Meng, ZHOU Ke-Chao. Trans. Nonferrous Met. Soc. China, 2008, 18(1):59-66

    30. [30]

      Mishra K M, Lal A K, Haque F Z. Solid State Ionics, 2004, 167(1):137-146

    31. [31]

      CAO Du-Meng, LI Zhi-You, ZHOU Ke-Chao. Journal of Functional Materials, 2004, 35(z1):1791-1794  doi: 10.3321/j.issn:1001-9731.2004.z1.499

    32. [32]

      WANG Gao-Jun, SU Guang-Yao, LI Zhao-Hui, et al. Chin. J. Power Sources, 2005, 29(6):349-352

    33. [33]

      Pistoia G, Pasquali M, Wang G, et al. Cheminform, 1990, 21(42):2365-2370

    34. [34]

      QIAO Xiao-Ning. Thesis for the Doctorate of Shaanxi University of Science and Technology. 2016.

    35. [35]

      SHI Chuan, REN Xiang-Zhong, ZHANG Pei-Xin, et al. The Proceedings of 29th the National Conference on Chemistry and Physics. Changsha:[s.n.], 2011:98-99

    36. [36]

      LI Hai-Xia, JIAO Li-Fang, YUAN Hua-Tang, et al. Chinese J. Inorg. Chem., 2005, 21(12):1865-1868  doi: 10.3321/j.issn:1001-4861.2005.12.017
       

    37. [37]

      ZHAO Bao-Xing, HUANG Cheng-De, DONG Shu-Ben, et al. Chin. J. Power Sources, 2006, 30(5):398-402

    38. [38]

      Murphy D W, Christian P A, Disalvo F J, et al. J. Electro-chem. Soc., 1981, 128(10):2053-2060  doi: 10.1149/1.2127188

    39. [39]

      Gibbard H F. J. Power Sources, 1989, 26(1/2):81-91

    40. [40]

      LIU Xiao-Jiang, LU Rui-Sheng. Chin. J. Power Sources, 2002, 26(1):26-28

    41. [41]

      De Guibert A, Crepy G, Buchel J, et al. Proceedings of the 34th International. New York:IEEE, 1990:145-147

    42. [42]

      SHI Kui, FENG Yu-Cai, ZHOU Ai. Chin. J. Power Sources, 2016, 40(9):1833-1835

    43. [43]

      Hillel T, Ein-Eli Y. J. Power Sources, 2013, 229:112-116  doi: 10.1016/j.jpowsour.2012.11.128

    44. [44]

      Guidotti R A, Reinhardt F W. Office of Scientific & Technical Information Technical Reports. Albuquerque:Sandia National Laboratories, 1996.

    45. [45]

      Dai J X, Lai M, Lafollette R M, et al. ECS Trans., 2011, 33(27):3-9

    46. [46]

      Dai J X, Lai M, Mckee J. 220th Electrochemical Society Meeting:Vol.41. Honolulu:The Electrochemical Society, 2012:11-16

    47. [47]

      YAN Yan, YANG Shao-Hua, ZHAO Yan-Long. Journal of Shenyang Ligong University, 2014, 33(2):6-8

    48. [48]

      LUO Jian-Tun, YANG Shao-Hua, BAI Yin -Xiang, et al. Chin. J. Power Sources, 2014, 38(8):1516-1518

    49. [49]

      DING Xiao-Ru, YUAN Chao-Jun, YANG Shao-Hua, et al. Journal of Shenyang Ligong University, 2016, 1(35):102-105

    50. [50]

      YUAN Chao-Jun, CAO Xiao-Hui, YANG Shao-Hua. Chin. J. Power Sources, 2015, 39(11):2450-2452  doi: 10.3969/j.issn.1002-087X.2015.11.035

    51. [51]

      YUAN Chao-Jun, YANG Shao-Hua, CAO Xiao-Hui, et al. Chin. J. Power Sources, 2015, 39(7):1479-1481

    52. [52]

      YUAN Chao-Jun, YANG Shao-Hua, CAO Xiao-Hui. Journal of Functional Materials, 2015, 46(17):17046-17048

    53. [53]

      Wang F Y, Zhang H C, Liu L, et al. J. Alloys Compd., 2016, 672:229-237  doi: 10.1016/j.jallcom.2016.02.089

    54. [54]

      SUN Rong, YANG Shao-Hua. Chin. J. Power Sources, 2017, 41(2):270-271

    55. [55]

      Cao J Q, Wang X Y, Tang A, et al. J. Alloys Compd., 2009, 479(1):875-878

    56. [56]

      SUN Rong, YANG Shao-Hua, CAO Xiao-Hui, et al. Chin. J. Power Sources, 2016, 40(11):2195-2197  doi: 10.3969/j.issn.1002-087X.2016.11.031

    57. [57]

      GUO Xue-Yi, LIU Hai-Han, LI Dong, et al. Mining and Metallurgical Engineering, 2007, 27(1):50-53

    58. [58]

      Niu Y Q, Wu Z, Du J L, et al. Solid State Ionics, 2014, 255:80-83  doi: 10.1016/j.ssi.2013.12.004

    59. [59]

      Guidotti R A, Reinhardt F W. IBA-2000 Manganese Oxide Battery Symposium:Vol.1. Albuquerque:Sandia National Laboratories, 2001.

    60. [60]

      Guidotti R A, Reinhardt F W. 41st Power Sources Conference. Philadelphia:[s.n.], 2004.

    61. [61]

      Niu Y Q, Wu Z, Du J L, et al. J. Power Sources, 2014, 245:537-542  doi: 10.1016/j.jpowsour.2013.06.140

    62. [62]

      Niu Y Q, Wu Z, Du J L, et al. Electrochim. Acta, 2014, 115:607-611  doi: 10.1016/j.electacta.2013.11.030

    63. [63]

      Zhu S, Zhou H, Hibino M, et al. Adv. Funct. Mater., 2005, 15(3):381-386  doi: 10.1002/(ISSN)1616-3028

    64. [64]

      MA Chun-An, LOU Ying-Wei, ZHAO Feng-Wu, et al. Trans. Nonferrous Met. Soc. China, 2004, 14(10):1736-1740  doi: 10.3321/j.issn:1004-0609.2004.10.020

    65. [65]

      Tarascon J M, Mckinnon W R, Coowar F, et al. J. Electro-chem. Soc., 1994, 141(6):1421-1431  doi: 10.1149/1.2054941

    66. [66]

      BAI Liang-Fei. Thesis for the Doctorate of University of Science and Technology of China. 2013.

    67. [67]

      JIANG Jian-Bing. Thesis for the Doctorate of Central South University. 2014.

    68. [68]

      YAO Yao-Chun. Thesis for the Doctorate of Kunming University of Science and Technology. 2005.

    69. [69]

      ZHENG De-Shan, YANG Xiao-Ling, YAO Xiao-Cui. New Chemical Materals, 2012, 4:34-36

    70. [70]

      Wang Z J, Du J L, Li Z L, et al. Ceram. Int., 2014, 40(2):3527-3531  doi: 10.1016/j.ceramint.2013.09.076

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    12. [12]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(37)
  • Abstract views(1932)
  • HTML views(413)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return