High-Efficiency Pt Catalyst Supported on Nitrogen-Doped Carbon Nanotubes for Methanol Electrooxidation
- Corresponding author: WU Qiang, wqchem@nju.edu.cn WANG Xi-Zhang, wangxzh@nju.edu.cn
Citation:
IU Chen-Xia, CAI Yue-Jin, WANG Yu, FAN Hao, CHEN Qiang, WU Qiang, YANG Li-Jun, WANG Xi-Zhang, HU Zheng. High-Efficiency Pt Catalyst Supported on Nitrogen-Doped Carbon Nanotubes for Methanol Electrooxidation[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(10): 1805-1809.
doi:
10.11862/CJIC.2017.205
Kakati N, Maiti J, Lee S H, et al. Chem. Rev., 2014, 114(24):12397-12429
doi: 10.1021/cr400389f
Chen A, Holt-Hindle P. Chem. Rev., 2010, 110(6):3767-3804
doi: 10.1021/cr9003902
Xie J, Zhang Q H, Gu L, et al. Nano Energy, 2016, 21:247-257
doi: 10.1016/j.nanoen.2016.01.013
Wang L, Nemoto Y, Yamauchi Y. J. Am. Chem. Soc., 2011, 133(25):9674-9677
doi: 10.1021/ja202655j
Wang X Z, Xue H, Yang L J, et al. Nanotechnology, 2011, 22(39):395401(6 pages)
doi: 10.1088/0957-4484/22/39/395401
Xia B Y, Wu H B, Wang X, et al. J. Am. Chem. Soc., 2012, 134(34):13934-13937
doi: 10.1021/ja3051662
SUN Han-Jun, DING Liang-Xin, CHEN Yu, et al. Chinese J. Inorg. Chem., 2010, 26(1):25-28
WANG Chun, KANG Jian-Xin, WANG Li-Li, et al. Acta Phys.-Chim. Sin., 2014, 30(4):708-714
doi: 10.3866/PKU.WHXB201401222
MEI Su-Juan, WU Jun-Jie, LU Shuang-Long, et al. Chinese J. Inorg. Chem., 2015, 31(12):2298-2304
Serp P, Corrias M, Kalck P. Appl. Catal. A, 2003, 253(2):337-358
doi: 10.1016/S0926-860X(03)00549-0
Yue B, Ma Y W, Tao H S, et al. J. Mater. Chem., 2008, 18(15):1747-1750
doi: 10.1039/b718283j
Ma Y W, Jiang S J, Jian G Q, et al. Energy Environ. Sci., 2009, 2(2):224-229
doi: 10.1039/B807213M
Jiang S J, Zhu L, Ma Y W, et al. J. Power Sources, 2010, 195(22):7578-7582
doi: 10.1016/j.jpowsour.2010.06.025
Feng H, Ma J, Hu Z. J. Mater. Chem., 2010, 20(9):1702-1708
doi: 10.1039/b915667d
Bergamaski K, Pinheiro A L N, Teixeira-Neto E, et al. J. Phys. Chem. B, 2006, 110(39):19271-19279
doi: 10.1021/jp063337h
Chen H, Yang Y, Hu Z, et al. J. Phys. Chem. B, 2006, 110(33):16422-16427
doi: 10.1021/jp062216e
Lu J Z, Yang L J, Xu B L, et al. ACS Catal., 2014, 4(2):613-621
doi: 10.1021/cs400931z
Pozio A, Francesco M D, Cemmi A, et al. J. Power Sources, 2002, 105(1):13-19
doi: 10.1016/S0378-7753(01)00921-1
Jiang X F, Wang X Z, Shen L M, et al. Chin. J. Catal., 2016, 37(7):1149-1155
doi: 10.1016/S1872-2067(15)61117-2
Hsin Y L, Hwang K C, Yeh C T. J. Am. Chem. Soc., 2007, 129(22):9999-10010
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
(a)~(e) TEM images of Pt/NCNT-1, Pt/NCNT-2, Pt/NCNT-3, Pt/NCNT-4 and Pt/NCNT-5, respectively; Inset in (a): HRTEM image; Inset in (f): Corresponding histograms of particle size distribution from 300 nanoparticles
Scan rate: 50 mV·s-1, electrolyte: 0.5 mol·L-1 H2SO4 solution
Peak currents were normalized by catalyst mass(left vertical axis) and Pt mass(right vertical axis), respectively; Scan rate: 50 mV·s-1, electrolyte: N2-saturated 1.0 mol·L-1 methanol and 0.5 mol·L-1 H2SO4 solution