Citation: LI Zhi-Hua, WANG Yu-Xia, QIU Dan, LI Zai-Jun, GU Zhi-Guo. AAO Assisted 1D Confined Assembly and 2D Surface Filming of Iron(Ⅱ) Triazole Nanomaterial and Spin-Crossover Properties[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(12): 2311-2321. doi: 10.11862/CJIC.2017.200 shu

AAO Assisted 1D Confined Assembly and 2D Surface Filming of Iron(Ⅱ) Triazole Nanomaterial and Spin-Crossover Properties

Figures(7)

  • Iron(Ⅱ) triazole (SCO1) and iron(Ⅱ) 4-amino-triazole (SCO2) spin-crossover (SCO) nanomaterials were assembled in the channel and on the surface of anodic aluminum oxide (AAO) templates simultaneously by a facile sequential multistep assembly method. The obtained SCO1-1D+2D and SCO2-1D+2D nanomaterials have been characterized by SEM, FT-IR, PXRD, and Raman spectra. SEM images show that spherical SCO NPs growing in the channel of AAO templates aggregate with time going on, and assemble as 1D nanostructure. While those growing on the surface of AAO substrates assemble as uniform and dense 2D SCO film. It is interesting that both SCO-1D+2D nanostructures present a special two-step spin-crossover behaviour with hysteresis loops (SCO1-1D+2D:Tc1↑=319 K, Tc1↓=313 K, Tc2↑=381 K, Tc2↓=340 K; SCO2-1D+2D:Tc1↑=181 K, Tc1↓=155 K, Tc2↑=246 K, Tc2↓=233 K). The magnetic measuring of SCO-1D and SCO-2D indicates that the two-step SCO behaviour results from the different assembly morphologies of SCO. The first step spin transition at lower temperature is ascribed to the properties of 2D SCO films growing on the surface of AAO templates, while the transition in the second step at higher temperature can be attributed to the 1D SCO confined assembly growing in the channel of AAO membranes.
  • 加载中
    1. [1]

      (a) Brooker S. Chem. Soc. Rev. , 2015, 44: 2880-2892
      (b)Quintero C M, Félix G, Suleimanov I, et al. Beilstein J. Nanotechnol. , 2014, 5: 2230-2239
      (c)Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011, 40: 3313-3335
      (d)Gütlich P, Gaspar A B, Garcia Y. Beilstein J. Org. Chem. , 2013, 9: 342-391
      (e)Gütlich P, Goodwin H A. Top. Curr. Chem. , 2004, 233: 1-47

    2. [2]

      (a) Mikolasek M, Félix G, Nicolazzi W, et al. New J. Chem., 2014, 38: 1834-1839
      (b)Nagy V, Suleimanov I, Molnár G, et al. J. Mater. Chem. C, 2015, 3: 7897-7905
      (c)Giménez-Marqués M, de Larrea M L G S, Coronado E. J. Mater. Chem. C, 2015, 3: 7946-7953
      (d)Bartual-Murgui C, Natividad E, Roubeau O. J. Mater. Chem. C, 2015, 3: 7916-7924
      (e)Lapresta-Fernández A, Cuéllar M P, Herrera J M, et al. J. Mater. Chem. C, 2014, 2: 7292-7303
      (f)WANG Yu-Xia(王玉侠), QIU Dan(邱丹), XI Sai-Fei(奚赛飞), et al. Chinese J. Inorg. Chem. (无机化学学报), 2016, 32(11): 1965-1972b

    3. [3]

      (a) Linares J, Codjovi E, Garcia Y. Sensors, 2012, 12: 4479-4492
      (b)Kahn O, Martinez C J. Science, 1998, 279: 44-48
      (c)Rotaru A, Dugay J, Tan R P, et al. Adv. Mater. , 2013, 25: 1745-1749
      (d)Hayami S, Holmes S M, Halcrow M A. J. Mater. Chem. C, 2015, 3: 7775-7778
      (e)Bartual-Murgui C, Akou A, Thibault C, et al. J. Mater. Chem. C, 2015, 3: 1277-1285
      (f)Molnár G, Salmon L, Nicolazzi W, et al. J. Mater. Chem. C, 2014, 2: 1360-1366

    4. [4]

      (a) Martinho P N, Rajnak C, Ruben M. Spin-Crossover Mater. , 2013: 375-404
      (b)Cavallini M. Phys. Chem. Chem. Phys., 2012, 14: 11867-11876

    5. [5]

      (a) Thomas L, Hayashi M, Jiang X, et al. Science, 2007, 315: 1553-1556 (b)Woltersdorf G, Back C H. Phys. Rev. Lett., 2007, 99: 227207

    6. [6]

      (a) Ebels U, Radulescu A, Henry Y, et al. Phys. Rev. Lett. , 2000, 84: 983-986
      (b)Guo L M, Wang X H, Zhong C F, et al. J. Appl. Phys., 2012, 111: 026104
      (c)Reddy S M, Park J J, Na S M, et al. Adv. Funct. Mater. , 2011, 21: 4677-4683 (d)Liu M, Lagdani J, Imrane H, et al. Appl. Phys. Lett. , 2007, 90: 103105

    7. [7]

      Martinho P N, Lemma T, Gildea B, et al. Angew. Chem. Int. Ed., 2012, 51:11995-11999  doi: 10.1002/anie.201205122

    8. [8]

      (a) Soyer H, Mingotaud C, Boillot M L, et al. Langmuir, 1998, 14: 5890-5895
      (b)Soyer H, Dupart E, Gómez-García C J, et al. Adv. Mater., 1999, 11: 382-384
      (c)Létard J F, Nguyen O, Soyer H, et al. Inorg. Chem., 1999, 38: 3020-3021
      (d)Roubeau O, Agricole B, Clérac, et al. J. Phys. Chem. B, 2004, 108: 15110-15116
      (e)Roubeau O, Natividad E, Agricole B, et al. Langmuir, 2007, 23: 3110-3117
      (f)White N G, Feltham H L C, Gandolfi C, et al. Dalton Trans. , 2010, 39: 3751-3758
      (g)Kitchen J A, White N G, Gandolfi C, et al. Chem. Commun. , 2010, 46: 6464-6466

    9. [9]

      (a) Ruben M, Rojo J, Romero-Salguero F J, et al. Angew. Chem. Int. Ed. , 2004, 43: 3644-3662
      (b)Cobo S, Molnár G, Real J A, et al. Angew. Chem. Int. Ed., 2006, 45: 5786-5789

    10. [10]

      (a) Jenekhe S A. Polym. Eng. Sci. , 1983, 23: 830-834
      (b)Matsuda M, Tajima H. Chem. Lett., 2007, 36: 700-701
      (c)Matsuda M, Isozaki H, Tajima H. Thin Solid Films, 2008, 517: 1465-1467
      (d)Quintero C M, Salmon L, Molnár G, et al. J. Mater. Chem. , 2012, 22: 3745-3751
      (e)Félix G, Abdul-Kader K, Mahfoud T, et al. J. Am. Chem. Soc. , 2011, 133: 15342-15345
      (f)Tissot A, Bardeau J F, Rivière E, et al. Dalton Trans., 2010, 39: 7806-7812

    11. [11]

      (a) Deegan R D, Bakajin O, Dupont T F, et al. Nature, 1997, 389: 827-829
      (b)Galyametdinov Y, Ksenofontov V, Prosvirin A, et al. Angew. Chem. Int. Ed., 2001, 40: 4269-4271

    12. [12]

      (a) Agusti G, Cobo S, Gaspar A B, et al. Chem. Mater., 2008, 20: 6721-6732
      (b)Bartual-Murgui C, Salmon L, Akou A, et al. New J. Chem., 2011, 35: 2089-2094

    13. [13]

      (a) Witte G, Wll C. J. Mater. Res. , 2004, 19: 1889-1916
      (b)Naggert H, Bannwarth A, Chemnitz S, et al. Dalton Trans. , 2011, 40: 6364-6366
      (c)Shi S, Schmerber G, Arabski J, et al. Appl. Phys. Lett. , 2009, 95: 043303

    14. [14]

      (a) Lai P, Hu M Z, Shi D, et al. Chem. Commun. , 2008: 1338-1340
      (b)Wang Y, Qin Y, Berger A, et al. Adv. Mater. , 2009, 21: 2763-2766
      (c)Wang K, Jin S M, Xu J, et al. ACS Nano, 2016, 10: 4954-4960

    15. [15]

      (a) Terekhov S N, Kachan S M, Panarin A Y, et al. Phys. Chem. Chem. Phys., 2015, 17: 31780-31789
      (b)Fang Z, Wang Y, Peng X, et al. Mater. Lett. , 2003, 57: 4187-4190
      (c)Cui M, Wang F, Miao Z, et al. RSC Adv., 2015, 5: 65627-65634

    16. [16]

      (a) Roubeau O. Chem. Eur. J., 2012, 18: 15230-15244
      (b)Sugiyarto K H, Goodwin H A. Aust. J. Chem., 1994, 47: 263-277

    17. [17]

      (a) Krober J, Codjovi E, Kahn O, et al. J. Am. Chem. Soc., 1993, 115: 9810-9811
      (b)Smit E, Manoun B, Waal D. J. Raman Spectrosc., 2001, 32: 339-344
      (c)Varnek V A, Lavrenova L G. J. Struct. Chem. , 1995, 36: 104-111
      (d)Chen Y, Ma J G, Zhang J J, et al. Chem. Commun., 2010, 46: 5073-5075
      (e)Kahn O, Sommier L, Codjovi E. Chem. Mater., 1997, 9: 3199-3205

    18. [18]

      He M, Yao J, Low Z X, et al. RSC Adv., 2014, 4:7634-7639  doi: 10.1039/c3ra46806b

    19. [19]

      Durand P, Pillet S, Bendeif E E, et al. J. Mater. Chem. C, 2013, 1:1933-1942  doi: 10.1039/c3tc00546a

    20. [20]

      (a) Hetmańczyk J, Hetmańczykń, Migda-Mikuli A, et al. J. Raman Spectrosc., 2012, 43: 1118-1125
      (b)Abdollahi-Alibeik M, Sadeghi-Vasafi N, Moaddeli A, et al. Res. Chem. Intermed., 2016, 42: 2867-2881

    21. [21]

      (a) Urakawa A, Van Beek W, Monrabal-Capilla M, et al. J. Phys. Chem. C, 2010, 115: 1323-1329
      (b)Grosjean A, Négrier P, Bordet P, et al. Eur. J. Inorg. Chem., 2013, 2013: 796-802

    22. [22]

      Chen Y, Ma J G, Zhang J J, et al. Chem. Commun., 2010, 46:5073-5075  doi: 10.1039/b927191k

    23. [23]

      Lefter C, Tricard S, Peng H, et al. J. Phys. Chem. C, 2015, 119:8522-8529  doi: 10.1021/acs.jpcc.5b01117

    24. [24]

      (a) Qiu D, Gu L, Sun X L, et al. RSC Adv., 2014, 4: 61313-61319
      (b)Moussa N O, Ostrovskii D, Garcia V M, et al. Chem. Phys. Lett., 2009, 477: 156-159

    25. [25]

      (a) Rotaru A, Molnár G, Salmon L, et al. Chem. Commun., 2012, 48: 4163-4165
      (b)Larionova J, Salmon L, Guari Y, et al. Angew. Chem. Int. Ed. , 2008, 120: 8360-8364
      (c)Gütlich P, Hauser A, Spiering H. Angew. Chem. Int. Ed. , 1994, 33: 2024-2054

    26. [26]

      Wang Y X, Qiu D, Xi S F, et al. Chem. Commun., 2016, 52:8034-8037  doi: 10.1039/C6CC02334G

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    4. [4]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    12. [12]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    13. [13]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    14. [14]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    15. [15]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    16. [16]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    17. [17]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    18. [18]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    19. [19]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    20. [20]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

Metrics
  • PDF Downloads(4)
  • Abstract views(377)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return