Syntheses, Crystal Structures and Fluorescence of Cadmium(Ⅱ) and Zinc(Ⅱ) Complexes Based on Flexible Tripodal Ligands

Qi WU Zhi SU Hong-Yan WANG Yi-Li DONG Jiong-Sheng HU Dong-Ju LIU Chang WU Yun XU Ao YING Min FANG Hong-Ke LIU

Citation:  WU Qi, SU Zhi, WANG Hong-Yan, DONG Yi-Li, HU Jiong-Sheng, LIU Dong-Ju, WU Chang, XU Yun, YING Ao, FANG Min, LIU Hong-Ke. Syntheses, Crystal Structures and Fluorescence of Cadmium(Ⅱ) and Zinc(Ⅱ) Complexes Based on Flexible Tripodal Ligands[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(10): 1889-1895. doi: 10.11862/CJIC.2017.196 shu

基于柔性三齿配体的镉(Ⅱ)和锌(Ⅱ)配合物的合成、结构和荧光性质

    通讯作者: 方敏, liuhongke@njnu.edu.cn
    刘红科, fangmin@njnu.edu.cn
  • 基金项目:

    国家自然科学基金国际合作重点项目(No.21420102002)和国家自然科学基金(No.21601088,21401105)资助

    国家自然科学基金 21401105

    国家自然科学基金国际合作重点项目 21420102002

    国家自然科学基金 21601088

摘要: 柔性三齿配体1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene(TITMB)和1,3,5-tris(triazol-1-ylmethyl)-2,4,6-trime-thylbenzene(TTTMB)与金属镉(Ⅱ)和锌(Ⅱ)分别反应,合成了配合物{[Cd3(SO44(TITMB)2(H2O)4][Cd(H2O)6]·2CH3OH}n1)和{[Zn(TTTMB)(HCOO)2]·CH3OH}n2)。配合物12均采用单晶X射线衍射、红外光谱、固态荧光、热重分析和元素分析进行了表征。在配合物1中,存在着由硫酸根离子和Cd(Ⅱ)构成的一维链,其再与配体TITMB配位形成二维层状结构,[Cd(H2O)6]2+位于层与层中间平衡电荷。配合物2具有典型的63二维蜂窝状拓扑结构。配合物12中的二维层状结构,均通过氢键作用延伸成为三维结构。配合物12均具有较高的热稳定性,并且在固态下释放蓝色荧光。

English

  • In recent years, the rational design and assembly of metal organic frameworks (MOFs) have attracted great attention due to their intriguing framework structures and potential applications in optical, gas storage, catalysis, and so on[1-8]. In general, the resulted structures of MOFs could be influenced by several factors, such as the selection of metal centers, organic ligands and the reaction pathways[9]. In contrast to the rigid ligands with fixed conformations, flexible ligands may adopt variable conformations to satisfy the require-ment of the center metal ions[10-11]. In previous work, the utilization of flexible tripodal nitrogen-including ligands have been proved to be effective candidates to build MOF structures, such as 1, 3, 5-tris(4-pyridyl-methyl)benzene[12], 1, 3, 5-tris(pyrazol-1-ylmethyl)-2, 4, 6-triethylbenzene[13], 1, 3, 5-tris(1, 2, 4-triazol-1-ylmethyl)benzene[14], and 1, 3, 5-tris(benzimidazole-1-ylmethyl)-2, 4, 6-trimethylbenzen[15]. Herein, the structures and prop-erties of two two-dimensional (2D) coordination poly-mers based on the 1, 3, 5-tris(imidazol-1-ylmethyl)-2, 4, 6-trimethylbenzene (TITMB) and 1, 3, 5-tris(triazol-1-ylmethyl)-2, 4, 6-trimethylbenzene (TTTMB) have been synthesized and characterized, where both TITMB and TTTMB ligands have adopted cis, cis, trans-configura-tion (Scheme 1)[16-18].

    图Scheme 1 Schematic showing of the cis, cis, trans-configuration of ligands TITMB and TTTMB Scheme1. Schematic showing of the cis, cis, trans-configuration of ligands TITMB and TTTMB

    1   Experimental

    1.1   Materials and measurements

    All commercially available chemicals are of reagent grade and were used as received without further purification. TITMB and TTTMB were prepared according to the literature methods[19]. The C, H and N analyses were performed on a Perkin-Elmer 240C elemental analyzer. Infrared (IR) spectra were recorded on a NEXUS 670 spectrophotometer by using KBr pellets. Thermogravimetric analyses (TGA) were performed on a Perkin Elmer instruments Diamond Thermogravimetric/Differential Thermal Anal-yzer under nitrogen with a heating rate of 10 ℃·min-1. The luminescence spectra were measured at room temperature on PEKIN ELMER Luminescence Spec-trometer LS50B.

    1.2   Synthesis of complex {[Cd3(SO4)4(TITMB)2(H2O)4][Cd(H2O)6]·2CH3OH}n (1)

    A mixture of CdSO4·8/3H2O (8.54 mg, 0.041 mmol), ligand TITMB (16.6 mg, 0.046 mmol), and 1, 4 -bis(trazol-1-ylmethyl)-2, 3, 5, 6-tetramethylbenzene (p -BTTMB) (12.4 mg, 0.042 mmol) was suspended in 4 mL mixed solvents of methanol and H2O (1:3, V/V), and heated in a Teflon-lined steel bomb at 120 ℃ for 2 d. After the mixture was slowly cooled to room temperature, colorless crystals of 1 were obtained. Anal. Calcd. for C44H76Cd4N12O28S4(%): C, 29.37; H, 4.25; N, 9.34. Found(%): C, 29.28; H, 3.88; N, 9.00. IR (KBr, cm-1): 3 381(s), 1 621(m), 1 520(m), 1 457(w), 1 400(w), 1 319(m), 1 246(m), 1 237(m), 1 118(s), 980(w), 935(w), 760(m), 660(m).

    1.3   Synthesis of {[Zn(TTTMB) (HCOO)2]·CH3OH}n (2)

    A mixture of Zn(CH3COO)2·2H2O (87.2 mg, 0.4 mmol), TTTMB (145.6 mg, 0.4 mmol), 1, 3-bis(1-imidazo)-1-ylmethyl)-2, 4, 6-trimethylbenzen (m-BITMB) (112.0 mg, 0.4 mmol), 3 mL methanol and 1 mL ethanol was placed in a 10 mL glass vial and dissolved by ultrasound. Methanoic acid was added to adjust pH value to 4. The glass vial was transferred into a 30 mL Teflon-lined stainless steel vessel and heated at 80 ℃ for 3 d. After the mixture was slowly cooled to the room temperature, colorless crystals of 2 were obtained. Anal. Calcd. for C21H27N9O5Zn(%): C, 45.74; H, 4.90; N, 22.87. Found(%): C, 45.00; H, 4.80; N, 22.58. IR (KBr, cm-1): 3 398(m), 3 087(m), 3 005(m), 2 821(m), 2 744(w), 1 712(w), 1 611(s), 1 524(m), 1 448(m), 1 339(s), 1 280(s), 1 221(w), 1 201(w), 1 132(s), 1 033(w), 1 013(w), 1 005(w), 994(s), 875(w), 773(m), 674(s).

    1.4   X-ray crystal structure determinations

    The single crystals of both complexes 1 and 2 were mounted onto thin glass fibers by epoxy glue in air for data collection. And the diffraction data for complexes 1 and 2 were collected on a Bruker Apex 2 CCD with Mo radiation (λ=0.071 073 nm) using ω-2θ scan method at 298 K. An empirical absorption correction was applied. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms of organic molecule were refined in calculated positions, assigned isotropic thermal parameters, and allowed to ride their parent atoms, while the H atoms for water are located from different map. All calculations were performed using the SHELX-97 program package[20]. In complex 1, the sulfate oxygen atoms (O1, O2, O4 and O6, O7, O8) split to two parts with the occupation of 0.66(2) and 0.34(2), 0.59(3) and 0.41(3), respe-ctively. Details of the crystal parameters, data collec-tions and refinements for 1 and 2 are summarized in Table 1. Selected bond lengths and angles, and hydrogen bonds for 1 and 2 are listed in Table 2 and Table 3, respectively.

    Table 1.  Crystal data and structural refinement of complexes 1 and 2
    Complex12
    Empirical formulaC44H76Cd4N12O28S4C21H27N9O5Zn
    Formula weight1 799.01550.89
    Crystal systemTrielinicTriclinic
    Space groupP1P1
    a / nm1.027 61(11)0.914 93(9)
    b / nm1.233 42(15)1.259 85(13)
    c / nm1.469 65(16)1.291 34(15)
    α/(°)68.646(1)61.093(1)
    β/(°)84.642(2)84.690(2)
    γ/(°)69.495(1)68.873(1)
    V / nm31.623 7(3)1.209 4(2)
    Z12
    Dc / (g·cm-3)1.8461.513
    μ/mm-11.511.07
    F(000)904572
    GOF1.0281.047
    Collected reflection8 2516 403
    Unique reflection5 5874 186
    R10.0600.093
    wR20.1840.235
    Table 2.  Selected bond lengths (nm) and angles (°) for complexes 1 and 2
    Complex 1
    Cd1-N90.221 4(7)Cd2-N60.225 1(7)Cell-010.257(2)
    Cd1-N30.224 0(6)Cd2-050.234 3(6)Cel 1-090.262 0(10)
    Cd1-O2C0.225 0(12)Cd2-O100.239 1(8)Cd3-0120.230 8(5)
    Cd1-O6B0.239 7(18)Cd3-O130.223 4(8)Cd3-O110.232 2(6)
    Cd1-O20.262 8(12)
    N9-Cd1-N3173.7(3)O6B-Cd1-O2162.1(5)N3-Cd1-O6B80.9(5)
    N9-Cd1-O2C94.4(4)O6B-Cd1-O1142.7(7)N3-Cd1-O2C91.9(4)
    N9-Cd1-O291.6(3)O9-Cd1-O2119.7(4)N3-Cd1-O984.2(3)
    N9-Cd1-O6B97.3(5)O9-Cd1-O167.0(7)N3-Cd1-O190.2(7)
    N9-Cd1-O989.5(3)O9-Cd1-O6B76.1(5)N3-Cd1-O291.8(3)
    N9-Cd1-O187.7(7)O1-Cd1-O252.8(7)O2C-Cd1-O6B104.3(5)
    O2C-Cd1-O9176.0(4)O2C-Cd1-O1112.2(7)O2C-Cd1-O259.4(5)
    N6-Cd2-O589.0(2)O13-Cd3-O1291.9(3)N6-Cd2-O1084.6(3)
    O5D-Cd2-O5180O13-Cd3-O12A88.1(3)N6D-Cd2-N6180
    N6-Cd2-O10D95.4(3)O12-Cd3-O12A180N6-Cd2-O5D91.0(2)
    O5-Cd2-O10D90.2(2)O12-Cd3-O11A92.9(2)O5-Cd2-O1089.8(2)
    O12-Cd3-O1187.1(2)013A-Cd3-O1189.2(3)O10D-Cd2-O10180
    O13A-Cd3-O13180O13-Cd3-O1190.8(3)O11A-Cd3-O11180
    Complex 2
    Zn1-O30.207 2(6)Zn1-N60.207 5(6)Zn1-020.217 2(8)
    Zn1-N30.209 3(6)Zn1-N90.226 1(6)Zn1-O10.238 9(8)
    O3-Zn1-N691.1(2)O3-Zn1-N391.9(2)O3-Zn1-O192.9(3)
    N6-Zn1-N3108.0(2)O3-Zn1-O291.6(3)N3-Zn1-O199.1(3)
    N6-Zn1-O294.8(3)N3-Zn1-O2156.9(3)N9-Zn1-O183.4(2)
    O3-Zn1-N9176.2(2)N6-Zn1-N991.9(2)N6-Zn1-O1152.4(3)
    N3-Zn1-N989.5(2)O2-Zn1-N985.8(2)O2-Zn1-O157.8(3)
    Symmetry codes: A: 2-x, -y, -z; B: x, 1+y, z; C: 1-x, 2-y, -z; D: -x+2, -y+2, -z+1 for 1.
    Table 3.  Hydrogen bond lengths (nm) and angles (°) for complexes 1~2 Symmetry codes: A: x, -1+y, z; B: 1-x, 1-y, -z for 1.
    D-H‧‧‧Ad(D-H) / nmd(H‧‧‧A) /nmd(D‧‧‧A) / nm∠D-H‧‧‧A /(°)
    1
    O9-H9A‧‧‧O5A0.085 00.195 70.278 7(14)165
    O9-H9B‧‧‧O140.095 00.229 10.300(2)141
    O10-H10A‧‧‧O80.084 90.257 60.270(2)123
    O11-H11A‧‧‧O7A0.085 00.214 90.299 6(13)174
    O11-H11B‧‧‧O4B0.085 00.204 70.277 5(19)143
    O12-H12A‧‧‧O3B0.085 00.191 20.274 6(12)167
    O12-H12B‧‧‧O6A0.085 10.212 30.296(2)167
    O13-H13C‧‧‧O8A0.085 00.207 90.271(2)130
    O14-H14‧‧‧O10.082 00.223 00.284(3)131
    2
    O5-H5‧‧‧O10.081 60.196 20.276(2)166
    C6-H6‧‧‧O10.093 00.253 50.308 4(12)118
    C2-H2‧‧‧O40.093 00.217 30.309 5(11)171
    Hydrogen atoms and methanol molecules are omitted for clarity; Symmetry codes: A: 2-x, -y, -z; B: x, 1+y, z; C: 1-x, 2-y, -z; D: 2-x, 2-y, 1-z

    CCDC: 808063, 1; 808067, 2.

    2   Results and discussion

    2.1   Crystal structure of complex 1

    Single crystal X-ray diffraction reveals that complex 1 crystallizes in the triclinic P1 space group. There are two independent units in complex 1: [Cd3(SO4)4(TITMB)2(H2O)4]2- and [Cd(H2O)6]2+. In com-plex 1, three crystallographic distinct Cd(Ⅱ) ions exist (Fig. 1): one seven coordinated Cd1 with bipyramidal geometry and two six coordinated Cd2 and Cd3 with distorted octahedral geometry(Fig. 1a). Each Cd1 is coordinated by two nitrogen atoms (N9B and N3B) from imidazole rings, four oxygen atoms (O1B, O2B, O2C and O6) from three distinct sulfate anions and one terminated water molecule (O9B). Each Cd2 sitting at symmetric center is coordinated by two nitrogen atoms (N6 and N6D) from two imidazole rings, two oxygen atoms (O5 and O5D) from two different sulfate anions and two terminal water molecules (O10 and O10D). Each Cd3 was coordinated by six water molecules and independently located in complex 1. The average bond length of Cd-N and Cd-O is comparable to previously reported[21].

    图1 (a) View of ORTEP drawing of complex 1 with 30% ellipsoid; (b) One dimensional inorganic chain formed by bridging sulfate anion and Cd(Ⅱ); (c) Two dimensional network constructed by TITMB ligands with 1D inorganic chain; (d) AAA stacking modes in complex 1; (e) Cd(H2O)6 units located between the 2D networks further extending the 2D network to 3D framework through hydrogen bonds Figure1. (a) View of ORTEP drawing of complex 1 with 30% ellipsoid; (b) One dimensional inorganic chain formed by bridging sulfate anion and Cd(Ⅱ); (c) Two dimensional network constructed by TITMB ligands with 1D inorganic chain; (d) AAA stacking modes in complex 1; (e) Cd(H2O)6 units located between the 2D networks further extending the 2D network to 3D framework through hydrogen bonds

    Each sulfate anion in complex 1 coordinates two Cd(Ⅱ) ions through adopting two different bridging modes (η1-η1-η0-η0-and η1-η2-η0-η0-coordination mode for the four oxygen atoms, respectively), which extends to one dimensional (1D) inorganic chain (Fig. 1b). The 1D chains are further linked by the TITMB ligand with cis, cis, trans-configuration to two dimensional (2D) network (Fig. 1c), where each TITMB ligand coor-dinates to three Cd(Ⅱ)centers. The 2D networks stack in an AAA sequence along the b axis (Fig. 1d), where the [Cd(H2O)6]2+ units locate in the cavity between two adjacent 2D layers by hydrogen bonds to neutralize the charge (Fig. 1e). The strong O-H…O hydrogen bonds between the Cd(H2O)6 units and the sulfate anions facilitated the formation of the 3D structure of complex 1, where the distance between the donor oxygen atom to the acceptor oxygen atom was in the range of 0.270(2)~0.300(2) nm (Table 3).

    2.2   Crystal structure of complex 2

    As shown in Fig. 2, the asymmetric unit of complex 2 contains one zinc(Ⅱ), one TTTMB ligand and two methanoic acid, and one methanol molecular. Single crystal X-ray crystallographic analyses reveal that each zinc(Ⅱ) is six-coordinated with a distorted octahedral geometry by three nitrogen atoms (N3, N6 and N9) from three different TTTMB ligands and three oxygen atoms (O1, O2, O3) from two methanoic acid (Fig. 2a). Two methanoic acids present two different coordination modes, chelate and monodentate, respec-tively[17]. The Zn-O bond distances vary from 0.207 2(6) to 0.238 9(8) nm, and the Zn-N distances are in the range of 0.207 5(6)~0.226 1(6) nm.

    图2 (a) View of ORTEP of complex 2 with 30% ellipsoid; (b) Two dimensional honeycomb 63 network built by TTTMB ligand with Zn(Ⅱ) centers; (c) ABAB packing mode of 2D layers along a axis in complex 2 Figure2. (a) View of ORTEP of complex 2 with 30% ellipsoid; (b) Two dimensional honeycomb 63 network built by TTTMB ligand with Zn(Ⅱ) centers; (c) ABAB packing mode of 2D layers along a axis in complex 2

    A typical 63 2D topological network is found in complex 2, where each TTTMB ligand coordinates to three Zn(Ⅱ) centers and is considered as a 3-connected nodes. The 2D networks stack in an ABAB packing sequence and further extend to a 3D structure by hydrogen bonds between the methanoic acid and methanol molecules (Table 3).

    图3 TGA curves of complexes 1 and 2 (a), solid state photoluminescence emission spectra of ligand TITMB and complex 1 with 330 nm excitation (b), ligand TTTMB and complexes 2 with 280 nm excitation (c), respectively Figure3. TGA curves of complexes 1 and 2 (a), solid state photoluminescence emission spectra of ligand TITMB and complex 1 with 330 nm excitation (b), ligand TTTMB and complexes 2 with 280 nm excitation (c), respectively

    2.3   Thermal stability analyses

    Thermogravimetric analyses were performed on grounded samples of 1 and 2 to evaluate their thermal robustness and decomposition behavior and the results are shown in Fig. 3a. Up to 350 ℃, complex 1 undergoes continuous weight loss of 13.1% due to the release of two free methanol and ten coordinated water molecules (Calcd. 13.6%). Obvious rapid weight loss is observed after heating over 350 ℃, which suggests the structure decomposition of complex 1. For complex 2, the first weight loss(11.1%) under 90 ℃ may be assigned to the loss of methanol molecule (5.8%) and partially release of methanoic acid, and the structure could maintained up to 250 ℃.

    2.4   Photoluminescence property

    The photoluminescence of ligands TITMB, TTTMB, complexes 1 and 2 was studied in the solid state at room temperature. The excitation wavelength for TITMB and 1, TTTMB and 2 is 330 and 280 nm, respectively. The results were depicted in Fig. 3b and 3c.

    Complex 1 shows a weak emission band at 400 nm and a strong peak at 450 nm upon the excitation (Fig. 3b). Since free ligand TITMB displays an emission band at 402 nm upon the excitation, the emission band of complex 1 at 400 nm should be due to the ligand-to-ligand (π-π*) charge transfer (LLCT)[22-24]. The 450 nm band should be ascribed to the ligand-to-metal charge transfer (LMCT)[25-27]. Complex 2 exhibits very similar emission band at 498 nm comparing to the free TTTMB ligand (Fig. 3c). Thus, the emission of complex 2 is assigned to be ligand-based (LLCT)[28-29].

    3   Conclusions

    Two new 2D coordination polymers based on flexible tripodal ligands of TITMB and TTTMB have been synthesized and characterized. In both complexes, the TITMB and TTTMB adopt cis, cis, trans-configur-ation. The counter anions play an important role in the construction of coordination polymer in consid-eration of their different coordination ability, size and so on. In this work, sulfate anions participate in the coordination of the resulted structure of complex 1 as the bridging ligand, while in complex 2, act as terminal coordination ligand only. In addition, complexes 1 and 2 display blue fluorescent emissions in the solid state at room temperature.

    1. [1]

      Feng D W, Jiang H L, Chen Y P, et al. Inorg. Chem., 2013, 52:12661-12667 doi: 10.1021/ic4018536

    2. [2]

      Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112:673-674 doi: 10.1021/cr300014x

    3. [3]

      Liu J, Thallapally P K, McGrail B P, et al. Chem. Soc. Rev., 2012, 41:2308-2322 doi: 10.1039/C1CS15221A

    4. [4]

      Liu H K, Tan H Y, Liao S, et al. Chem. Commun., 2001:1008-1009

    5. [5]

      Feng D W, Gu Z Y, Li J R, et al. Angew. Chem. Int. Ed., 2012, 51:10307-10310 doi: 10.1002/anie.201204475

    6. [6]

      Jiang H L, Feng D W, Wang K C, et al. J. Am. Chem. Soc., 2013, 135:13934-13938 doi: 10.1021/ja406844r

    7. [7]

      Chen Y, Lykourinou V, Carissa V, et al. J. Am. Chem. Soc., 2012, 134:13188-13191 doi: 10.1021/ja305144x

    8. [8]

      Wiester M J, Ulmann P A, Mirkin C A. Angew. Chem. Int. Ed., 2011, 50:114-137 doi: 10.1002/anie.v50.1

    9. [9]

      Chen Y, Lykourinou V, Hoang T, et al. Inorg. Chem., 2012, 51:9156-9158 doi: 10.1021/ic301280n

    10. [10]

      Liu H K, Sun W Y, Zhu H L, et al. Inorg. Chim. Acta, 1999, 295:129-135 doi: 10.1016/S0020-1693(99)00332-1

    11. [11]

      徐周庆, 何亚玲, 李慧军, 等.无机化学学报, 2017, 33(5):897-904 

    12. [12]

      Hiroyasu F, Felipe G, Zhang Y B, et al. J. Am. Chem. Soc., 2014, 136:4369-4381 doi: 10.1021/ja500330a

    13. [13]

      Reinsch H, Marszalek B, Wack J, et al. Chem. Commun., 2012, 48:9486-9488 doi: 10.1039/c2cc34909d

    14. [14]

      Yin X J, Zhou X H, Gu Z G, et al. Inorg. Chem. Commun., 2009, 12:548-551 doi: 10.1016/j.inoche.2009.04.012

    15. [15]

      Henninger S K, Jeremias F, Kummer H, et al. Eur. J. Inorg. Chem., 2012, 16:2625-2634 

    16. [16]

      Fan J, Zhu H F, Okamura T, et al. Chem. Eur. J., 2003, 9:4724-4731 doi: 10.1002/chem.v9:19

    17. [17]

      Fan J, Zhu H F, Okamura T, et al. Inorg. Chem., 2003, 42:158-162 doi: 10.1021/ic020461g

    18. [18]

      Yan W, Han L J, Jia H L, et al. Inorg. Chem., 2016, 55:8816-8821 doi: 10.1021/acs.inorgchem.6b01328

    19. [19]

      Nguyen J G, Cohen S M. J. Am. Chem. Soc., 2010, 132:4560-4561 doi: 10.1021/ja100900c

    20. [20]

      Sheldrick G M. SHELXS-97, Program for X-ray Crystal Structure Solution and Refinement, University of Göttingen, Germany, 1997.

    21. [21]

      赵仑, 陈瑞战, 王子忱.无机化学学报, 2016, 32(7):1190-1198 

    22. [22]

      赵越, 翟玲玲, 孙为银.无机化学学报, 2014, 30(1):18-22 

    23. [23]

      Hu T P, Xue Z J, Zheng B H, et al. CrystEngComm, 2016, 18:5386-5392 doi: 10.1039/C6CE00674D

    24. [24]

      Khatua S, Kang J, Huh J O, et al. Cryst. Growth Des., 2010, 10:327-334 doi: 10.1021/cg900917v

    25. [25]

      Bach S, Panthöfer M, Bienert R, et al. Cryst. Growth Des., 2016, 16:4232-4239 doi: 10.1021/acs.cgd.6b00208

    26. [26]

      Dong W W, Xia L, Peng Z, et al. J. Solid State Chem., 2016, 238:170-174 doi: 10.1016/j.jssc.2016.03.027

    27. [27]

      Wang J, Zhang X, Wei Q L, et al. Nano Energy, 2016, 19:222-233 doi: 10.1016/j.nanoen.2015.10.036

    28. [28]

      Sun D R, Sun F X, Deng X Y, et al. Inorg. Chem., 2015, 54:8639-8643 doi: 10.1021/acs.inorgchem.5b01278

    29. [29]

      Sun D R, Ye L, Sun F X, et al. Inorg. Chem., 2017, 56:5203-5209 doi: 10.1021/acs.inorgchem.7b00333

  • Scheme 1  Schematic showing of the cis, cis, trans-configuration of ligands TITMB and TTTMB

    Figure 1  (a) View of ORTEP drawing of complex 1 with 30% ellipsoid; (b) One dimensional inorganic chain formed by bridging sulfate anion and Cd(Ⅱ); (c) Two dimensional network constructed by TITMB ligands with 1D inorganic chain; (d) AAA stacking modes in complex 1; (e) Cd(H2O)6 units located between the 2D networks further extending the 2D network to 3D framework through hydrogen bonds

    Methanol molecule and the hydrogen atoms are omitted for clarity; Symmetry codes: A: x, -1+y, 1+z; B: x, -1+y, z

    Figure 2  (a) View of ORTEP of complex 2 with 30% ellipsoid; (b) Two dimensional honeycomb 63 network built by TTTMB ligand with Zn(Ⅱ) centers; (c) ABAB packing mode of 2D layers along a axis in complex 2

    Figure 3  TGA curves of complexes 1 and 2 (a), solid state photoluminescence emission spectra of ligand TITMB and complex 1 with 330 nm excitation (b), ligand TTTMB and complexes 2 with 280 nm excitation (c), respectively

    Table 1.  Crystal data and structural refinement of complexes 1 and 2

    Complex12
    Empirical formulaC44H76Cd4N12O28S4C21H27N9O5Zn
    Formula weight1 799.01550.89
    Crystal systemTrielinicTriclinic
    Space groupP1P1
    a / nm1.027 61(11)0.914 93(9)
    b / nm1.233 42(15)1.259 85(13)
    c / nm1.469 65(16)1.291 34(15)
    α/(°)68.646(1)61.093(1)
    β/(°)84.642(2)84.690(2)
    γ/(°)69.495(1)68.873(1)
    V / nm31.623 7(3)1.209 4(2)
    Z12
    Dc / (g·cm-3)1.8461.513
    μ/mm-11.511.07
    F(000)904572
    GOF1.0281.047
    Collected reflection8 2516 403
    Unique reflection5 5874 186
    R10.0600.093
    wR20.1840.235
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and angles (°) for complexes 1 and 2

    Complex 1
    Cd1-N90.221 4(7)Cd2-N60.225 1(7)Cell-010.257(2)
    Cd1-N30.224 0(6)Cd2-050.234 3(6)Cel 1-090.262 0(10)
    Cd1-O2C0.225 0(12)Cd2-O100.239 1(8)Cd3-0120.230 8(5)
    Cd1-O6B0.239 7(18)Cd3-O130.223 4(8)Cd3-O110.232 2(6)
    Cd1-O20.262 8(12)
    N9-Cd1-N3173.7(3)O6B-Cd1-O2162.1(5)N3-Cd1-O6B80.9(5)
    N9-Cd1-O2C94.4(4)O6B-Cd1-O1142.7(7)N3-Cd1-O2C91.9(4)
    N9-Cd1-O291.6(3)O9-Cd1-O2119.7(4)N3-Cd1-O984.2(3)
    N9-Cd1-O6B97.3(5)O9-Cd1-O167.0(7)N3-Cd1-O190.2(7)
    N9-Cd1-O989.5(3)O9-Cd1-O6B76.1(5)N3-Cd1-O291.8(3)
    N9-Cd1-O187.7(7)O1-Cd1-O252.8(7)O2C-Cd1-O6B104.3(5)
    O2C-Cd1-O9176.0(4)O2C-Cd1-O1112.2(7)O2C-Cd1-O259.4(5)
    N6-Cd2-O589.0(2)O13-Cd3-O1291.9(3)N6-Cd2-O1084.6(3)
    O5D-Cd2-O5180O13-Cd3-O12A88.1(3)N6D-Cd2-N6180
    N6-Cd2-O10D95.4(3)O12-Cd3-O12A180N6-Cd2-O5D91.0(2)
    O5-Cd2-O10D90.2(2)O12-Cd3-O11A92.9(2)O5-Cd2-O1089.8(2)
    O12-Cd3-O1187.1(2)013A-Cd3-O1189.2(3)O10D-Cd2-O10180
    O13A-Cd3-O13180O13-Cd3-O1190.8(3)O11A-Cd3-O11180
    Complex 2
    Zn1-O30.207 2(6)Zn1-N60.207 5(6)Zn1-020.217 2(8)
    Zn1-N30.209 3(6)Zn1-N90.226 1(6)Zn1-O10.238 9(8)
    O3-Zn1-N691.1(2)O3-Zn1-N391.9(2)O3-Zn1-O192.9(3)
    N6-Zn1-N3108.0(2)O3-Zn1-O291.6(3)N3-Zn1-O199.1(3)
    N6-Zn1-O294.8(3)N3-Zn1-O2156.9(3)N9-Zn1-O183.4(2)
    O3-Zn1-N9176.2(2)N6-Zn1-N991.9(2)N6-Zn1-O1152.4(3)
    N3-Zn1-N989.5(2)O2-Zn1-N985.8(2)O2-Zn1-O157.8(3)
    Symmetry codes: A: 2-x, -y, -z; B: x, 1+y, z; C: 1-x, 2-y, -z; D: -x+2, -y+2, -z+1 for 1.
    下载: 导出CSV

    Table 3.  Hydrogen bond lengths (nm) and angles (°) for complexes 1~2 Symmetry codes: A: x, -1+y, z; B: 1-x, 1-y, -z for 1.

    D-H‧‧‧Ad(D-H) / nmd(H‧‧‧A) /nmd(D‧‧‧A) / nm∠D-H‧‧‧A /(°)
    1
    O9-H9A‧‧‧O5A0.085 00.195 70.278 7(14)165
    O9-H9B‧‧‧O140.095 00.229 10.300(2)141
    O10-H10A‧‧‧O80.084 90.257 60.270(2)123
    O11-H11A‧‧‧O7A0.085 00.214 90.299 6(13)174
    O11-H11B‧‧‧O4B0.085 00.204 70.277 5(19)143
    O12-H12A‧‧‧O3B0.085 00.191 20.274 6(12)167
    O12-H12B‧‧‧O6A0.085 10.212 30.296(2)167
    O13-H13C‧‧‧O8A0.085 00.207 90.271(2)130
    O14-H14‧‧‧O10.082 00.223 00.284(3)131
    2
    O5-H5‧‧‧O10.081 60.196 20.276(2)166
    C6-H6‧‧‧O10.093 00.253 50.308 4(12)118
    C2-H2‧‧‧O40.093 00.217 30.309 5(11)171
    Hydrogen atoms and methanol molecules are omitted for clarity; Symmetry codes: A: 2-x, -y, -z; B: x, 1+y, z; C: 1-x, 2-y, -z; D: 2-x, 2-y, 1-z
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  710
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2017-10-10
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-06-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章