Citation:
HUANG Ji-Chun, MEI Lin, MA Zheng, ZHU Xian-Yu, QUAN Jing-Bin, LI De-Cheng. Electrochemical Performance of Li-rich Layered Cathode Material 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2 by ZrO2 Coating[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(7): 1236-1242.
doi:
10.11862/CJIC.2017.173
-
Lithium-rich layered oxide materials 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(named as LNMCO) have been prepared by spray-drying method and followed by high temperature annealed and surface coated with ZrO2.The TEM results show that the ZrO2 layer with nano size particles is located on the surface of the particles.The initial coulombic efficiencies and discharge capacities of the 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2 lithium-rich layered oxide material are largely improved by ZrO2 coating, and the value is 87.2%, 279.3 mAh·g-1, compared to 75.1%, 224.1 mAh·g-1, respectively, for the bare sample at the room temperature and at a current density of 20 mA·g-1 in the voltage range of 2.0 to 4.8 V when the content of ZrO2 is 1.5%.After 100 cycles, the 1.5% ZrO2-coated sample shows a high discharge capacity of 248.3 mAh·g-1 with a capacity retention of 88.9%, while the bare LNMCO presents a lower discharge capacity of 195.9 mAh·g-1 with a capacity retention of 87.4%.
-
-
-
[1]
Islam M S, Fisher C A J. Chem. Soc. Rev., 2014, 43:85-204 doi: 10.1039/C3CS60210A
-
[2]
Zhu J, Zhang G H, Yu X Z, et al. Nano Energy, 2014, 3:80-87 doi: 10.1016/j.nanoen.2013.10.009
-
[3]
Zhang Q F, Xu C M, Lu B A. Electrochim. Acta, 2014, 132:180-185 doi: 10.1016/j.electacta.2014.03.111
-
[4]
Zhang Q Y, Zhang C L, Li B, et al. Electrochim. Acta, 2013, 107:139-146 doi: 10.1016/j.electacta.2013.05.151
-
[5]
Jeffrey W F. J. Power Sources, 2010, 195:939-954 doi: 10.1016/j.jpowsour.2009.09.001
- [6]
-
[7]
Hu S K, Cheng G H, Cheng M Y, et al. J. Power Sources, 2009, 188:564-569 doi: 10.1016/j.jpowsour.2008.11.113
-
[8]
Lim S, Cho J. Electrochem. Commun., 2008, 10:1478-1481 doi: 10.1016/j.elecom.2008.07.028
-
[9]
Gong C, Xue Z G, Wen S, et al. J. Power Sources, 2016, 318:93-112 doi: 10.1016/j.jpowsour.2016.04.008
-
[10]
Bommel A V, Krause L J, Dahn J R. J. Electrochem Soc., 2011, 158:A731-A735 doi: 10.1149/1.3579418
-
[11]
Shojan J, Chitturi V R, Sole J, et al. J. Power Sources, 2015, 274:440-450 doi: 10.1016/j.jpowsour.2014.10.032
-
[12]
Zheng J M, Xu P H, Gu M, et al. Chem. Mater., 2015, 27:1381-1390 doi: 10.1021/cm5045978
-
[13]
Ma Z, Huang J C, Quan J B, et al. RSC Adv., 2016, 6:20522-20531 doi: 10.1039/C5RA22330J
-
[14]
Huang Z, Li X, Liang Y, et al. Solid State Ionics, 2015, 282:88-94 doi: 10.1016/j.ssi.2015.10.005
-
[15]
Liu X Y, Huang T, Yu A. Electrochim. Acta, 2014, 133:555-563 doi: 10.1016/j.electacta.2014.04.085
-
[16]
Zang Y, Ding C X, Wang C, et al. Electrochim. Acta, 2015, 168:234-239 doi: 10.1016/j.electacta.2015.03.223
-
[17]
Yu H J, Zhou H S. J. Mater. Chem., 2012, 22:15507-15510 doi: 10.1039/c2jm33484d
-
[18]
Kiziltas-Yavuz N, Bhaskar A, Dixon D. J. Power Sources, 2014, 267:533-541 doi: 10.1016/j.jpowsour.2014.05.110
-
[19]
Kang S H, Amine K. J. Power Sources, 2005, 146:654-657 doi: 10.1016/j.jpowsour.2005.03.152
-
[20]
Jin X, Xu Q J, Liu M, et al. Electrochim. Acta, 2014, 136:19-26 doi: 10.1016/j.electacta.2014.05.043
-
[21]
Akita T, Tabuchi M, Nabeshima Y, et al. J. Power Sources, 2014, 254:39-47 doi: 10.1016/j.jpowsour.2013.12.086
-
[22]
Kang S F, Qin H F, Fang Y, et al. Electrochim. Acta, 2014, 144:22-30 doi: 10.1016/j.electacta.2014.06.155
-
[23]
Shi S J, Tu J P, Tang Y Y, et al. Electrochim. Acta, 2013, 88:671-679 doi: 10.1016/j.electacta.2012.10.111
-
[24]
Liu X Y, Huang T, Yu A. Electrochim. Acta, 2015, 163:82-92 doi: 10.1016/j.electacta.2015.02.155
-
[25]
Thackeray M M, Kang S H, Johnson C S, et al. J. Mater. Chem., 2007, 17:3112 doi: 10.1039/b702425h
-
[26]
Liu Z, Yu A, Lee J Y. J. Power Sources, 1999, 81-82:416-419 doi: 10.1016/S0378-7753(99)00221-9
-
[27]
Ohzuku T, Nagayama M, Tsuji K, et al. J. Mater. Chem., 2011, 21:10179-10188 doi: 10.1039/c0jm04325g
-
[28]
He W, Qian J, Cao Y, et al. RSC Adv., 2012, 2:3423-3429 doi: 10.1039/c2ra20122d
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[3]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[4]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[5]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[6]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[9]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[10]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[13]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[16]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[17]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[18]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[19]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[20]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(952)
- HTML views(166)