Citation:
HUANG Ji-Chun, MEI Lin, MA Zheng, ZHU Xian-Yu, QUAN Jing-Bin, LI De-Cheng. Electrochemical Performance of Li-rich Layered Cathode Material 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2 by ZrO2 Coating[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(7): 1236-1242.
doi:
10.11862/CJIC.2017.173
-
Lithium-rich layered oxide materials 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(named as LNMCO) have been prepared by spray-drying method and followed by high temperature annealed and surface coated with ZrO2.The TEM results show that the ZrO2 layer with nano size particles is located on the surface of the particles.The initial coulombic efficiencies and discharge capacities of the 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2 lithium-rich layered oxide material are largely improved by ZrO2 coating, and the value is 87.2%, 279.3 mAh·g-1, compared to 75.1%, 224.1 mAh·g-1, respectively, for the bare sample at the room temperature and at a current density of 20 mA·g-1 in the voltage range of 2.0 to 4.8 V when the content of ZrO2 is 1.5%.After 100 cycles, the 1.5% ZrO2-coated sample shows a high discharge capacity of 248.3 mAh·g-1 with a capacity retention of 88.9%, while the bare LNMCO presents a lower discharge capacity of 195.9 mAh·g-1 with a capacity retention of 87.4%.
-
-
-
[1]
Islam M S, Fisher C A J. Chem. Soc. Rev., 2014, 43:85-204 doi: 10.1039/C3CS60210A
-
[2]
Zhu J, Zhang G H, Yu X Z, et al. Nano Energy, 2014, 3:80-87 doi: 10.1016/j.nanoen.2013.10.009
-
[3]
Zhang Q F, Xu C M, Lu B A. Electrochim. Acta, 2014, 132:180-185 doi: 10.1016/j.electacta.2014.03.111
-
[4]
Zhang Q Y, Zhang C L, Li B, et al. Electrochim. Acta, 2013, 107:139-146 doi: 10.1016/j.electacta.2013.05.151
-
[5]
Jeffrey W F. J. Power Sources, 2010, 195:939-954 doi: 10.1016/j.jpowsour.2009.09.001
- [6]
-
[7]
Hu S K, Cheng G H, Cheng M Y, et al. J. Power Sources, 2009, 188:564-569 doi: 10.1016/j.jpowsour.2008.11.113
-
[8]
Lim S, Cho J. Electrochem. Commun., 2008, 10:1478-1481 doi: 10.1016/j.elecom.2008.07.028
-
[9]
Gong C, Xue Z G, Wen S, et al. J. Power Sources, 2016, 318:93-112 doi: 10.1016/j.jpowsour.2016.04.008
-
[10]
Bommel A V, Krause L J, Dahn J R. J. Electrochem Soc., 2011, 158:A731-A735 doi: 10.1149/1.3579418
-
[11]
Shojan J, Chitturi V R, Sole J, et al. J. Power Sources, 2015, 274:440-450 doi: 10.1016/j.jpowsour.2014.10.032
-
[12]
Zheng J M, Xu P H, Gu M, et al. Chem. Mater., 2015, 27:1381-1390 doi: 10.1021/cm5045978
-
[13]
Ma Z, Huang J C, Quan J B, et al. RSC Adv., 2016, 6:20522-20531 doi: 10.1039/C5RA22330J
-
[14]
Huang Z, Li X, Liang Y, et al. Solid State Ionics, 2015, 282:88-94 doi: 10.1016/j.ssi.2015.10.005
-
[15]
Liu X Y, Huang T, Yu A. Electrochim. Acta, 2014, 133:555-563 doi: 10.1016/j.electacta.2014.04.085
-
[16]
Zang Y, Ding C X, Wang C, et al. Electrochim. Acta, 2015, 168:234-239 doi: 10.1016/j.electacta.2015.03.223
-
[17]
Yu H J, Zhou H S. J. Mater. Chem., 2012, 22:15507-15510 doi: 10.1039/c2jm33484d
-
[18]
Kiziltas-Yavuz N, Bhaskar A, Dixon D. J. Power Sources, 2014, 267:533-541 doi: 10.1016/j.jpowsour.2014.05.110
-
[19]
Kang S H, Amine K. J. Power Sources, 2005, 146:654-657 doi: 10.1016/j.jpowsour.2005.03.152
-
[20]
Jin X, Xu Q J, Liu M, et al. Electrochim. Acta, 2014, 136:19-26 doi: 10.1016/j.electacta.2014.05.043
-
[21]
Akita T, Tabuchi M, Nabeshima Y, et al. J. Power Sources, 2014, 254:39-47 doi: 10.1016/j.jpowsour.2013.12.086
-
[22]
Kang S F, Qin H F, Fang Y, et al. Electrochim. Acta, 2014, 144:22-30 doi: 10.1016/j.electacta.2014.06.155
-
[23]
Shi S J, Tu J P, Tang Y Y, et al. Electrochim. Acta, 2013, 88:671-679 doi: 10.1016/j.electacta.2012.10.111
-
[24]
Liu X Y, Huang T, Yu A. Electrochim. Acta, 2015, 163:82-92 doi: 10.1016/j.electacta.2015.02.155
-
[25]
Thackeray M M, Kang S H, Johnson C S, et al. J. Mater. Chem., 2007, 17:3112 doi: 10.1039/b702425h
-
[26]
Liu Z, Yu A, Lee J Y. J. Power Sources, 1999, 81-82:416-419 doi: 10.1016/S0378-7753(99)00221-9
-
[27]
Ohzuku T, Nagayama M, Tsuji K, et al. J. Mater. Chem., 2011, 21:10179-10188 doi: 10.1039/c0jm04325g
-
[28]
He W, Qian J, Cao Y, et al. RSC Adv., 2012, 2:3423-3429 doi: 10.1039/c2ra20122d
-
[1]
-
-
-
[1]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[4]
Rongrong Wang , Chen Li , Xiang Ren , Keliang Zhang , Yu Sun , Xianzhong Sun , Kai Wang , Xiong Zhang , Yanwei Ma . Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(4): 100222-0. doi: 10.1016/j.actphy.2025.100222
-
[5]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014
-
[6]
Shuang Wang , Xiaoqi Fu , Shanshan Yao . Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials. Acta Physico-Chimica Sinica, 2026, 42(5): 100206-0. doi: 10.1016/j.actphy.2025.100206
-
[7]
Peicai Li , Xubin Wang , Qinghua Zhang , Bowen Wang , Xiaohui Rong , Yong-Sheng Hu , Zhongtao Li . High-rate and long-cycling P2-type cathode material for sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(5): 100214-0. doi: 10.1016/j.actphy.2025.100214
-
[8]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[9]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
-
[10]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[11]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[12]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[13]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[14]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[19]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100021-0. doi: 10.3866/PKU.WHXB202311005
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(1722)
- HTML views(269)
Login In
DownLoad: