Citation: HAN Wang-Kang, TIAN Lei, XU Zong-Li, ZHU Wei, LI Zhi-Hua, LI Tao, GU Zhi-Guo, LI Zai-Jun. Self-Sorting of Binuclear Schiff-Base Complexes under Solvent-Free Grinding Conditions[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(4): 550-559. doi: 10.11862/CJIC.2017.069 shu

Self-Sorting of Binuclear Schiff-Base Complexes under Solvent-Free Grinding Conditions

  • Corresponding author: GU Zhi-Guo, zhiguogu@jiangnan.edu.cn
  • Received Date: 10 November 2016
    Revised Date: 18 January 2017

Figures(5)

  • Three binuclear iron (Ⅱ) imidazole Schiff-base complexes were constructed by one-pot multicomponent assembly of di (imidazole aldehyde)(A~C), 2-aminoethyl (ethyl) amine (D) and Fe (OTf)2 under solvent-free grinding conditions. X-ray crystallography revealed that the three complexes crystallized in different space groups of Cmca for 1, P21/c for 2~3. And the molecular structures of 1~3 all display Fe2L2 arrangement. In complexes 1~3, two ligand strands wrap around two Fe2+ ions and the Fe2+ ions are coordinated to chelating moieties from two imidazole nitrogen atoms and four amine nitrogen atoms, resulting in the pseudo octahedral FeN6 coordination geometry. Taking advantage of the facile approach above, we then investigated the discrimination abilities of the multicomponent assembly process under the solvent-free condition when different components were mixed together (a mixture of D, two kinds of di (imidazole aldehyde) of A~C and Fe (OTf)2). In this assemble system, combinations[D+A+B+Fe2+] or[D+A+C+Fe2+] adopt narcissistic self-sorting with only two species, while social self-sorting took place in the combination[D+B+C+Fe2+] forming the single heteromer 4, which was composed of two different ligands and exhibited Fe2LL' arrangement. The structure of 4 was further verified by the X-ray analysis by preparing the single crystal of the heteromer 4. To compare the efficiency of solvent-free grinding solid self-sorting against the solution self-sorting, the conventional solution-based self-sorting reactions were also performed using the same starting materials with equal amount. In consequence of the complexity of 1H NMR peaks of mixture, the selectivity is poor in solution. Overall, compared with self-sorting in solution, the solvent-free grinding self-sorting is more efficient due to the certain restrictions of molecular movement.
  • 加载中
    1. [1]

      (a) Cook T R, Stang P J. Chem. Rev., 2015, 115(15):7001-7045
      (b) McConnell A J, Wood C S, Neelakandan P P, et al. Chem. Rev., 2015, 115(15):7729-7793
      (c) Castilla A M, Ramsay W J, Nitschke J R. Acc. Chem. Res., 2014, 47(7):2063-2073
      (d) Ward M D, Raithby P R. Chem. Soc. Rev., 2013, 42(4):1619-1636
      (e) Giuseppone N. Acc. Chem. Res., 2012, 45(12):2178-2188
      (f) Nitschke J R. Acc. Chem. Res., 2007, 40(2):103-112
      (g) Smulders M M J, Riddell I A, Browne C, et al. Chem. Soc. Rev., 2013, 42(4):1728-1754

    2. [2]

      (a) He Z, Jiang W, Schalley C A. Chem. Soc. Rev., 2015, 44(3):779-789
      (b) Yang L, Tan X, Wang Z, et al. Chem. Rev., 2015, 115(15):7196-7239
      (c) Herrmann A. Chem. Soc. Rev., 2014, 43(6):1899-1933
      (d) Zheng B, Wang F, Dong S, et al. Chem. Soc. Rev., 2012, 41(5):1621-1636
      (e) Chakrabarty R, Mukherjee P S, Stang P J. Chem. Rev., 2011, 111(11):6810-6918
      (f) Maeda C, Kamada T, Aratani N, et al. Coord. Chem. Rev., 2007, 251(21):2743-2752

    3. [3]

      (a) Saha M L, De S, Pramanik S, et al. Chem. Soc. Rev., 2013, 42(16):6860-6909
      (b) Sun Q F, Iwasa J, Ogawa D, et al. Science, 2010, 328(5982):1144-1147
      (c) Holloway L R, Young M C, Beran G J O, et al. Chem. Sci., 2015, 6(8):4801-4806
      (d) Gütz C, Hovorka R, Stobe C, et al. Eur. J. Org. Chem., 2014, (1):206-216

    4. [4]

      (a) Gidron O, Jirásek M, Trapp N, et al. J. Am. Chem. Soc., 2015, 137(39):12502-12505
      (b) Gütz C, Hovorka R, Struch N, et al. J. Am. Chem. Soc., 2014, 136(33):11830-11838
      (c) Acharyya K, Mukherjee S, Mukherjee P S. J. Am. Chem. Soc., 2012, 135(2):554-557
      (d) Wang W, Zhang Y, Sun B, et al. Chem. Sci., 2014, 5(12):4554-4560
      (e) Singh A S, Sun S S. Chem. Commun., 2012, 48(59):7392-7394
      (f) Yan L L, Tan C H, Zhang G L, et al. J. Am. Chem. Soc., 2015, 137(26):8550-8555

    5. [5]

      (a) Tomimasu N, Kanaya A, Takashima Y, et al. J. Am. Chem. Soc., 2009, 131(34):12339-12343
      (b) Klotzbach S, Beuerle F. Angew. Chem. Int. Ed., 2015, 54(35):10356-10360
      (c) Benkhäuser C, Lützen A. Beilstein J. Org. Chem., 2015, 11(1):693-700
      (d) Mukhopadhyay P, Wu A, Isaacs L. J. Org. Chem., 2004, 69(19):6157-6164

    6. [6]

      Baxter P, Lehn J M, DeCian A, et al. Angew. Chem. Int. Ed., 1993, 32(1):69-72  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      (a) Safont-Sempere M M, Fernández G, Wurthner F. Chem. Rev., 2011, 111(9):5784-5814
      (b) Jiménez A, Bilbeisi R A, Ronson T K, et al. Angew. Chem., Int. Ed., 2014, 53(18):4556-4560
      (c) Bloch W M, Abe Y, Holstein J J, et al. J. Am. Chem. Soc., 2016, 138(41):13750-13755

    8. [8]

      (a) Mayoral M J, Rest C, Schellheimer J, et al. Chem. Eur. J., 2012, 18(49):15607-15611
      (b) Smulders M M J, Jiménez A, Nitschke J R. Angew. Chem. Int. Ed., 2012, 51(27):6681-6685

    9. [9]

      (a) De S, Mahata K, Schmittel M. Chem. Soc. Rev., 2010, 39(5):1555-1575
      (b) Ronson T K, Roberts D A, Black S P, et al. J. Am. Chem. Soc., 2015, 137(45):14502-14512
      (c) Saha M L, Neogi S, Schmittel M. Dalton Trans., 2014, 43(10):3815-3834

    10. [10]

      (a) Giri C, Sahoo P K, Puttreddy R, et al. Chem. Eur. J., 2015, 21(17):6390-6393
      (b) Chen P N, Lai C C, Chiu S H. Org. Lett., 2011, 13(17):4660-4663

    11. [11]

      (a) Biswal B P, Chandra S, Kandambeth S, et al. J. Am. Chem. Soc., 2013, 135(14):5328-5331
      (b) Friščić T, Reid D G, Halasz I, et al. Angew. Chem. Int. Ed., 2010, 49(4):712-715
      (c) Tireli M, Kulcsár M J, Cindro N, et al. Chem. Commun., 2015, 51(38):8058-8061
      (d) Das G, Shinde D B, Kandambeth S, et al. Chem. Commun., 2014, 50(84):12615-12618
      (e) Bowmaker G A. Chem. Commun., 2013, 49(4):334-348
      (f) Loots L, Wahl H, Van Der Westhuizen L, et al. Chem. Commun., 2012, 48(94):11507-11509

    12. [12]

      Ren D H, Qiu D, Pang C Y, et al. Chem. Commun., 2015, 51(4):788-791  doi: 10.1039/C4CC08041F

    13. [13]

      SAINT-Plus, Version 6.02, Bruker Analytical X-ray System:Madison, WI, 1999.

    14. [14]

      Sheldrick G M. SADABS, Bruker Analytical X-ray Systems:Madison, WI, 1996.

    15. [15]

      (a) Sheldrick G M. SHELXTL-97, Program for X-ray Crystal Structure Solution and Refinement, University of Göttingen, Germany, 1997.
      (b) Sheldrick G M. Acta Crystallogr. Sect. A, 2008, 64(1):112-122

    16. [16]

      (a) Sluis P V D, Spek A L. Acta Crystallogr. Sect. A, 1990, A46:194-201
      (b) Müller P, Herbst-Irmer R, Spek A L, et al. Crystal Structure Refinement-a Crystallographer's Guide to SHELXL. New York:Oxford University Press, 2006:63-96

    17. [17]

      (a) Brooker S. Chem. Soc. Rev., 2015, 44(10):2880-2892
      (b) Hagiwara H, Okada S. Chem. Commun., 2016, 52(4):815-818
      (c) Qin L F, Pang C Y, Han W K, et al. Dalton Trans., 2016, 45(17):7340-7348

    18. [18]

      (a) Herber R, Casson L M. Inorg. Chem., 1986, 25(6):847-852
      (b) Zilverentant C L, Van Albada G A, Bousseksou A, et al. Inorg. Chim. Acta, 2000, 303(2):287-290
      (c) Sunatsuki Y, Kawamoto R, Fujita K, et al. Inorg. Chem., 2009, 48(18):8784-8795

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(7)
  • Abstract views(962)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return