Photocatalytic Hydrogen Evolution from Water Splitting Using Semiconductors:Advance, Challenge and Prospects
- Corresponding author: XIE Ying-Peng, yingpeng1985@126.com
Citation:
XIE Ying-Peng, WANG Guo-Sheng, ZHANG En-Lei, ZHANG Xiang. Photocatalytic Hydrogen Evolution from Water Splitting Using Semiconductors:Advance, Challenge and Prospects[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(2): 177-209.
doi:
10.11862/CJIC.2017.030
Fujishima A, Honda K. Nature, 1972, 238(5358):37-38
doi: 10.1038/238037a0
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1):253-278
doi: 10.1039/B800489G
Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010, 110(11):6503-6570
doi: 10.1021/cr1001645
Kitano M, Hara M. J. Mater. Chem., 2010, 20(4):627-641
doi: 10.1039/B910180B
Chen X B, Li C, Gratzel M, et al. Chem. Soc. Rev., 2012, 41(23):7909-7937
doi: 10.1039/c2cs35230c
Yerga R M N, Galvan M C A, del Valle F, et al. Chemsus-chem, 2009, 2(6):471-485
doi: 10.1002/cssc.v2:6
Li X, Yu J G, Low J X, et al. J. Mater. Chem. A, 2015, 3(6): 2485-2534
doi: 10.1039/C4TA04461D
Osterloh F E. Chem. Mater., 2008, 20(1):35-54
doi: 10.1021/cm7024203
Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011, 50(32):7238-7266
doi: 10.1002/anie.v50.32
Liu G, Yang H G, Pan J, et al. Chem. Rev., 2014, 114(19): 9559-9612
doi: 10.1021/cr400621z
Liu G, Yu J C, Lu G Q, et al. Chem. Commun., 2011, 47(24):6763-6783
doi: 10.1039/c1cc10665a
Zhang K, Guo L J. Catal. Sci. Technol., 2013, 3(7):1672-1690
doi: 10.1039/c3cy00018d
Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43(22):7520-7535
doi: 10.1039/C3CS60378D
Ekambaram S. J. Alloys Compd., 2008, 448(1/2):238-245
Liu G, Wang L Z, Yang H G, et al. J. Mater. Chem., 2010, 20(5):831-843
doi: 10.1039/B909930A
Ni M, Leung M K H, Leung D Y C, et al. Renewable Sustainable Energy Rev., 2007, 11(3):401-425
doi: 10.1016/j.rser.2005.01.009
Sayama K, Arakawa H. J. Phys. Chem., 1993, 97(3):531-533
doi: 10.1021/j100105a001
Chen X Y, Yu T, Fan X X, et al. Appl. Surf. Sci., 2007, 253(20):8500-8506
doi: 10.1016/j.apsusc.2007.04.035
Takahara Y, Kondo J N, Takata T, et al. Chem. Mater., 2001, 13(4):1194-1199
doi: 10.1021/cm000572i
Janaky C, Rajeshwar K, de Tacconi N R, et al. Catal. Today, 2013, 199:53-64
doi: 10.1016/j.cattod.2012.07.020
Domen K, Kudo A, Onishi T. J. Catal., 1986, 102(1):92-98
doi: 10.1016/0021-9517(86)90143-0
Ogura S, Kohno M, Sato K, et al. Appl. Surf. Sci., 1997, 121: 521-524
Inoue Y, Kubokawa T, Sato K. J. Phys. Chem., 1991, 95(10):4059-4063
doi: 10.1021/j100163a032
Inoue Y, Asai Y, Sato K. J. Chem. Soc. Faraday Trans., 1994, 90(5):797-802
doi: 10.1039/FT9949000797
Takata T, Furumi Y, Shinohara K, et al. Chem. Mater., 1997, 9(5):1063-1064
doi: 10.1021/cm960612b
Ogura S, Sato K, Inoue Y. Phys. Chem. Chem. Phys., 2000, 2(10):2449-2454
doi: 10.1039/b000187m
Kudo A, Sayama K, Tanaka A, et al. J. Catal., 1989, 120(2): 337-352
doi: 10.1016/0021-9517(89)90274-1
Kudo A, Kato H, Nakagawa S. J. Phys. Chem. B, 2000, 104(3):571-575
doi: 10.1021/jp9919056
Miseki Y, Kato H, Kudo A. Chem. Lett., 2005, 34(1):54-55
doi: 10.1246/cl.2005.54
Miseki Y, Kato H, Kudo A. Chem. Lett., 2006, 35(9):1052-1053
doi: 10.1246/cl.2006.1052
Kato H, Kudo A. Catal. Lett., 1999, 58(2/3):153-155
doi: 10.1023/A:1019082001809
Ishihara T, Nishiguchi H, Fukamachi K, et al. J. Phys. Chem. B, 1999, 103(1):1-3
doi: 10.1021/jp983590k
Kato H, Kudo A. Chem. Phys. Lett., 1998, 295(5/6):487-492
Machida M, Mitsuyama T, Ikeue K, et al. J. Phys. Chem. B, 2005, 109(16):7801-7806
doi: 10.1021/jp044833d
Shimizu K, Tsuji Y, Kawakami M, et al. Chem. Lett., 2002, 31(11):1158-1159
doi: 10.1246/cl.2002.1158
Kurihara T, Okutomi H, Miseki Y, et al. Chem. Lett., 2006, 35(3):274-275
doi: 10.1246/cl.2006.274
Otsuka H, Kim K Y, Kouzu A, et al. Chem. Lett., 2005, 34(6):822-823
doi: 10.1246/cl.2005.822
Kim D W, Cho I S, Lee S, et al. J. Am. Ceram. Soc., 2010, 93(11):3867-3872
doi: 10.1111/jace.2010.93.issue-11
Cheng H F, Huang B B, Liu Y Y, et al. Chem. Commun., 2012, 48(78):9729-9731
doi: 10.1039/c2cc35289c
Yourey J E, Bartlett B M. J. Mater. Chem., 2011, 21(21): 7651-7660
doi: 10.1039/c1jm11259g
Cho I S, Kwak C H, Kim D W, et al. J. Phys. Chem. C, 2009, 113(24):10647-10653
doi: 10.1021/jp901557z
Huang G L, Zhang C, Zhu Y F. J. Alloys Compd., 2007, 432(1/2):269-276
Ahmad M I, Mohanty G, Cambrea L R, et al. J. Cryst. Growth, 2012, 343(1):115-121
doi: 10.1016/j.jcrysgro.2011.12.081
Lee S, Teshima K, Fujisawa M, et al. Phys. Chem. Chem. Phys., 2009, 11(19):3628-3633
doi: 10.1039/b821209k
Konta R, Kato H, Kobayashi H, et al. Phys. Chem. Chem. Phys., 2003, 5(14):3061-3065
doi: 10.1039/b300179b
Tokunaga S, Kato H, Kudo A. Chem. Mater., 2001, 13(12): 4624-4628
doi: 10.1021/cm0103390
Hu Y W, Zhang W, Pan W. Mater. Res. Bull., 2013, 48(2): 668-671
doi: 10.1016/j.materresbull.2012.11.029
Girija K, Thirumalairajan S, Patra A K, et al. Curr. Appl. Phys., 2013, 13(4):652-658
doi: 10.1016/j.cap.2012.11.004
Apte S K, Garaje S N, Valant M, et al. Green Chem., 2012, 14(5):1455-1462
doi: 10.1039/c2gc16416g
Karunakaran C, Raadha S S, Gomathisankar P. J. Alloys Compd., 2013, 549:269-275
doi: 10.1016/j.jallcom.2012.09.035
Sato J, Saito N, Nishiyama H, et al. J. Phys. Chem. B, 2001, 105(26):6061-6063
doi: 10.1021/jp010794j
Sato J, Saito N, Nishiyama H, et al. Chem. Lett., 2001, 30(9): 868-869
doi: 10.1246/cl.2001.868
Sato J, Kobayashi H, Saito N, et al. J. Photochem. Photobiol. A, 2003, 158(2/3):139-144
Sato J, Kobayashi H, Inoue Y. J. Phys. Chem. B, 2003, 107(31):7970-7975
doi: 10.1021/jp030021q
Ikarashi K, Sato J, Kobayashi H, et al. J. Phys. Chem. B, 2002, 106(35):9048-9053
doi: 10.1021/jp020539e
Sato J, Kobayashi H, Ikarashi K, et al. J. Phys. Chem. B, 2004, 108(14):4369-4375
doi: 10.1021/jp0373189
Liu R M, Yin J Z, Du W, et al. Eur. J. Inorg. Chem., 2013, 2013(8):1358-1362
doi: 10.1002/ejic.201200975
Li B X, Liu T X, Hu L Y, et al. J. Phys. Chem. Solids, 2013, 74(4):635-640
doi: 10.1016/j.jpcs.2012.12.020
Zhu J X, Yin Z Y, Yang D, et al. Energy Environ. Sci., 2013, 6(3):987-993
doi: 10.1039/c2ee24148j
Abdulkarem A M, Elssfah E M, Yan N N, et al. J. Phys. Chem. Solids, 2013, 74(4):647-652
doi: 10.1016/j.jpcs.2012.12.027
Zhang J Y, Wang Y H, Zhang J, et al. ACS Appl. Mater. Interfaces, 2013, 5(3):1031-1037
doi: 10.1021/am302726y
Lei Z B, You W S, Liu M Y, et al. Chem. Commun., 2003(17):2142-2143
doi: 10.1039/b306813g
Tsuji I, Kato H, Kobayashi H, et al. J. Am. Chem. Soc., 2004, 126(41):13406-13413
doi: 10.1021/ja048296m
Jang J S, Borse P H, Lee J S, et al. J. Chem. Phys., 2008, 128(15):154717
doi: 10.1063/1.2900984
Tsuji I, Kato H, Kudo A. Angew. Chem. Int. Ed., 2005, 44(23):3565-3568
doi: 10.1002/(ISSN)1521-3773
Sato J, Saito N, Yamada Y, et al. J. Am. Chem. Soc., 2005, 127(12):4150-4151
doi: 10.1021/ja042973v
Ma S S K, Hisatomi T, Maeda K, et al. J. Am. Chem. Soc., 2012, 134(49):19993-19996
doi: 10.1021/ja3095747
Hara M, Hitoki G, Takata T, et al. Catal. Today, 2003, 78(1/2/3/4):555-560
Ishikawa A, Takata T, Kondo J N, et al. J. Am. Chem. Soc., 2002, 124(45):13547-13553
doi: 10.1021/ja0269643
Wang X C, Maeda K, Thomas A, et al. Nat. Mater., 2009, 8(1):76-80
doi: 10.1038/nmat2317
Zhang G G, Lan Z A, Lin L H, et al. Chem. Sci., 2016, 7(5): 3062-3066
doi: 10.1039/C5SC04572J
Liu J, Liu Y, Liu N Y, et al. Science, 2015, 347(6225):970-974
doi: 10.1126/science.aaa3145
Guo F, Chen J L, Zhang M W, et al. J. Mater. Chem. A, 2016, 4(28):10806-10809
doi: 10.1039/C6TA03424A
Martin D J, Reardon P J T, Moniz S J A, et al. J. Am. Chem. Soc., 2014, 136(36):12568-12571
doi: 10.1021/ja506386e
Zhao G X, Huang X B, Fina F, et al. Catal. Sci. Technol., 2015, 5(6):3416-3422
doi: 10.1039/C5CY00379B
Zhao Z W, Sun Y J, Dong F. Nanoscale, 2015, 7(1):15-37
doi: 10.1039/C4NR03008G
Zhang J S, Wang B, Wang X C. Prog. Chem., 2014, 26(1):19-29
Zheng Y, Lin L H, Wang B, et al. Angew. Chem. Int. Ed., 2015, 54(44):12868-12884
doi: 10.1002/anie.v54.44
Zhang J S, Chen Y, Wang X C. Energy Environ. Sci., 2015, 8(11):3092-3108
doi: 10.1039/C5EE01895A
Zheng Y, Lin L H, Ye X J, et al. Angew. Chem. Int. Ed., 2014, 53(44):11926-11930
doi: 10.1002/anie.201407319
Zhang J S, Zhang M W, Lin L H, et al. Angew. Chem. Int. Ed., 2015, 54(21):6297-6301
doi: 10.1002/anie.201501001
Niu P, Zhang L L, Liu G, et al. Adv. Funct. Mater., 2012, 22(22):4763-4770
doi: 10.1002/adfm.v22.22
Liu G, Niu P, Sun C H, et al. J. Am. Chem. Soc., 2010, 132(33):11642-11648
doi: 10.1021/ja103798k
Lin Z Z, Wang X C. Angew. Chem. Int. Ed., 2013, 52(6): 1735-1738
doi: 10.1002/anie.v52.6
Zhang G G, Zhang M W, Ye X X, et al. Adv. Mater., 2014, 26(5):805-809
doi: 10.1002/adma.201303611
Zhang J S, Chen X F, Takanabe K, et al. Angew. Chem. Int. Ed., 2010, 49(2):441-444
doi: 10.1002/anie.200903886
Zhang J S, Zhang G G, Chen X F, et al. Angew. Chem. Int. Ed., 2012, 51(13):3183-3187
doi: 10.1002/anie.v51.13
Zhang J S, Zhang M W, Lin S, et al. J. Catal., 2014, 310:24-30
doi: 10.1016/j.jcat.2013.01.008
ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, et al. Acta Phys-Chim. Sin., 2012, 28(10):2336-2342
doi: 10.3866/PKU.WHXB201209104
Sprick R S, Jiang J X, Bonillo B, et al. J. Am. Chem. Soc., 2015, 137(9):3265-3270
doi: 10.1021/ja511552k
Yang C, Ma B C, Zhang L Z, et al. Angew. Chem. Int. Ed., 2016, 55(32):9202-9206
doi: 10.1002/anie.201603532
Sprick R S, Bonillo B, Clowes R, et al. Angew. Chem. Int. Ed., 2016, 55(5):1824-1828
Schwab M G, Hamburger M, Feng X L, et al. Chem. Commun., 2010, 46(47):8932-8934
doi: 10.1039/c0cc04057f
Shao M W, Cheng L, Zhang X H, et al. J. Am. Chem. Soc., 2009, 131(49):17738-17739
doi: 10.1021/ja908085c
Wang F, Ng W K H, Yu J C, et al. Appl. Catal. B:Environ., 2012, 111:409-414
Liu G, Yin L C, Niu P, et al. Angew. Chem. Int. Ed., 2013, 52(24):6242-6245
doi: 10.1002/anie.201302238
Chiou Y D, Hsu Y J. Appl. Catal. B:Environ., 2011, 105(1/2):211-219
Liu G, Niu P, Yin L C, et al. J. Am. Chem. Soc., 2012, 134(22):9070-9073
doi: 10.1021/ja302897b
Takata T, Tanaka A, Hara M, et al. Catal. Today, 1998, 44(1/2/3/4):17-26
Ikeda S, Hara M, Kondo J N, et al. J. Mater. Res., 1998, 13(4):852-855
doi: 10.1557/JMR.1998.0113
Kato H, Asakura K, Kudo A. J. Am. Chem. Soc., 2003, 125(10):3082-3089
doi: 10.1021/ja027751g
Soldat J, Marschall R, Wark M. Chem. Sci., 2014, 5(10): 3746-3752
doi: 10.1039/C4SC01127A
Liu H, Yuan J, Jiang Z, et al. J. Mater. Chem., 2011, 21(41):16535-16543
doi: 10.1039/c1jm11809a
Mu L C, Zhao Y, Li A L, et al. Energy Environ. Sci., 2016, 9(7):2463-2469
doi: 10.1039/C6EE00526H
Maeda K, Lu D L, Domen K. Chem. Eur. J., 2013, 19(16): 4986-4891
doi: 10.1002/chem.201300158
Pan C S, Takata T, Nakabayashi M, et al. Angew. Chem. Int. Ed., 2015, 54(10):2955-2959
doi: 10.1002/anie.201410961
Zou Z G, Ye J H, Sayama K, et al. Nature, 2001, 414(6864): 625-627
doi: 10.1038/414625a
Xu J S, Pan C S, Takata T, et al. Chem. Commun., 2015, 51(33):7191-7194
doi: 10.1039/C5CC01728A
Zhang P, Zhang J J, Gong J L. Chem. Soc. Rev., 2014, 43(13):4395-4422
doi: 10.1039/C3CS60438A
Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998(3):357-358
doi: 10.1039/a707440i
Maeda K, Teramura K, Lu D L, et al. Nature, 2006, 440(7082):295
doi: 10.1038/440295a
Maeda K, Teramura K, Domen K. J. Catal., 2008, 254(2): 198-204
doi: 10.1016/j.jcat.2007.12.009
Li J, Liu B D, Yang W J, et al. Nanoscale, 2016, 8(6):3694-3703
doi: 10.1039/C5NR08663A
Takanabe K, Uzawa T, Wang X C, et al. Dalton Trans., 2009(45):10055-10062
doi: 10.1039/b910318j
Maeda K, Saito N, Inoue Y, et al. Chem. Mater., 2007, 19(16):4092-4097
doi: 10.1021/cm0709828
Ni L, Tanabe M, Irie H. et al. Chem. Commun., 2013, 49(86):10094-10096
doi: 10.1039/c3cc45222k
Zhang N, Shi J W, Mao S S. Chem. Commun., 2014, 50(16): 2002-2004
doi: 10.1039/c3cc48026g
Maeda K. Catal. Sci. Technol., 2014, 4(7):1949-1953
doi: 10.1039/C4CY00251B
Li R G, Weng Y X, Zhou X, et al. Energy Environ. Sci., 2015, 8(8):2377-2382
doi: 10.1039/C5EE01398D
Maeda K, Lu D L, Teramura K, et al. Energy Environ. Sci., 2010, 3(4):471-478
doi: 10.1039/B915064A
Zhang K, Kim W, Ma M, et al. J. Mater. Chem. A, 2015, 3(9):4803-4810
doi: 10.1039/C4TA05571C
Kudo A. MRS Bull., 2011, 36(1):32-38
doi: 10.1557/mrs.2010.3
Maeda K, Domen K. J. Phys. Chem. Lett., 2010, 1(18):2655-2661
doi: 10.1021/jz1007966
Maeda K. ACS Catal., 2013, 3(7):1486-1503
doi: 10.1021/cs4002089
Maeda K, Higashi M, Lu D L, et al. J. Am. Chem. Soc., 2010, 132(16):5858-5868
doi: 10.1021/ja1009025
Chen S, Qi Y, Hisatomi T, et al. Angew. Chem. Int. Ed., 2015, 54(29):8498-8501
doi: 10.1002/anie.201502686
Sasaki Y, Iwase A, Kato H, et al. J. Catal., 2008, 259(1): 133-137
doi: 10.1016/j.jcat.2008.07.017
Kato H, Sasaki Y, Iwase A, et al. Bull. Chem. Soc. Jpn., 2007, 80(12):2457-2464
doi: 10.1246/bcsj.80.2457
Sasaki Y, Nemoto H, Saito K, et al. J. Phys. Chem. C, 2009, 113(40):17536-17542
doi: 10.1021/jp907128k
Yang L L, Zhou H, Fan T X, et al. Phys. Chem. Chem. Phys., 2014, 16(15):6810-6826
doi: 10.1039/c4cp00246f
Walsh A, Yan Y, Huda M N, et al. Chem. Mater., 2009, 21(3):547-551
doi: 10.1021/cm802894z
Wang D F, Tang J W, Zou Z G, et al. Chem. Mater., 2005, 17(20):5177-5182
doi: 10.1021/cm051016x
Yi Z G, Ye J H, Kikugawa N, et al. Nat. Mater., 2010, 9(7): 559-564
doi: 10.1038/nmat2780
Tang J W, Zou Z G, Ye J H. Catal. Lett., 2004, 92(1/2):53-56
doi: 10.1023/B:CATL.0000011086.20412.aa
Xie Y P, Liu G, Yin L C, et al. J. Mater. Chem., 2012, 22(14):6746-6751
doi: 10.1039/c2jm16178h
Wang D E, Jiang H F, Zong X, et al. Chem. Eur. J., 2011, 17(4):1275-1282
doi: 10.1002/chem.v17.4
Zhang G G, Huang C J, Wang X C. Small, 2015, 11(9/10): 1215-1221
Zhang G G, Zang S H, Lin L H, et al. ACS Appl. Mater. Interfaces, 2016, 8(3):2287-2296
doi: 10.1021/acsami.5b11167
Zhang G G, Zang S H, Lan Z A, et al. J. Mater. Chem. A, 2015, 3(35):17946-17950
doi: 10.1039/C5TA04767F
Zhang G G, Zang S H, Wang X C. ACS Catal., 2015, 5(2): 941-947
doi: 10.1021/cs502002u
Pan H, Zhu S, Lou X, et al. RSC Adv., 2015, 5(9):6543-6552
doi: 10.1039/C4RA09546D
Zhang H, Lü X J, Li Y M, et al. ACS Nano, 2010, 4(1):380-386
doi: 10.1021/nn901221k
Kim I Y, Lee J M, Kim T W, et al. Small, 2012, 8(7):1038-1048
doi: 10.1002/smll.201101703
Lee J S, You K H, Park C B. Adv. Mater., 2012, 24(8):1084-1088
doi: 10.1002/adma.201104110
Guo J J, Li Y, Zhu S M, et al. RSC Adv., 2012, 2(4):1356-1363
doi: 10.1039/C1RA00621E
Sun Z H, Guo J J, Zhu S M, et al. Nanoscale, 2014, 6(4): 2186-2193
doi: 10.1039/C3NR05249D
Meng F K, Li J T, Cushing S K, et al. ACS Catal., 2013, 3(4):746-751
doi: 10.1021/cs300740e
Sun Z H, Guo J J, Zhu S M, et al. RSC Adv., 2014, 4(53): 27963-27970
doi: 10.1039/C4RA03533J
Huang H, Yue Z K, Li G, et al. J. Mater. Chem. A, 2013, 1(47):15110-15116
doi: 10.1039/c3ta13433d
Bai S, Shen X P, Lü H W, et al. J. Colloid Interface Sci., 2013, 405:1-9
doi: 10.1016/j.jcis.2013.05.023
Liu L, Liu J C, Sun D D. Catal. Sci. Technol., 2012, 2(12): 2525-2532
doi: 10.1039/c2cy20483e
Borgarello E, Kiwi J, Gratzel M, et al. J. Am. Chem. Soc., 1982, 104(11):2996-3002
doi: 10.1021/ja00375a010
Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(5528):269-271
doi: 10.1126/science.1061051
Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107(23):5483-5486
doi: 10.1021/jp030133h
Ihara T, Miyoshi M, Iriyama Y, et al. Appl. Catal. B: Environ., 2003, 42(4):403-409
doi: 10.1016/S0926-3373(02)00269-2
Liu G, Pan J, Yin L C, et al. Adv. Funct. Mater., 2012, 22(15):3233-3238
doi: 10.1002/adfm.v22.15
Liu G, Wang L Z, Sun C H, et al. Chem. Mater., 2009, 21(7):1266-1274
doi: 10.1021/cm802986r
Liu G, Yin L C, Wang J Q, et al. Energy Environ. Sci, 2012, 5(11):9603-9610
doi: 10.1039/c2ee22930g
Pan X Y, Yang M Q, Fu X Z, et al. Nanoscale, 2013, 5(9): 3601-3614
doi: 10.1039/c3nr00476g
Lü Y H, Yao W Q, Ma X G, et al. Catal. Sci. Technol., 2013, 3(12):3136-3146
doi: 10.1039/c3cy00369h
Niu P, Liu G, Cheng H M. J. Phys. Chem. C, 2012, 116(20):11013-11018
doi: 10.1021/jp301026y
Niu P, Yin L C, Yang Y Q, et al. Adv. Mater., 2014, 26(47): 8046-8052
doi: 10.1002/adma.v26.47
Li R G, Wang X L, Jin S Q, et al. Sci. Rep., 2015, 5:13475
doi: 10.1038/srep13475
Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331(6018): 746-750
doi: 10.1126/science.1200448
Kang Y Y, Yang Y Q, Yin L C, et al. Adv. Mater., 2015, 27(31):4572-4577
doi: 10.1002/adma.v27.31
Wang Z Q, Wen B, Hao Q Q, et al. J. Am. Chem. Soc., 2015, 137(28):9146-9152
doi: 10.1021/jacs.5b04483
Kakuta N, Park K H, Finlayson M F, et al. J. Phys. Chem., 1985, 89(5):732-734
doi: 10.1021/j100251a002
Xing C J, Zhang Y J, Yan W, et al. Int. J. Hydrogen Energy, 2006, 31(14):2018-2024
doi: 10.1016/j.ijhydene.2006.02.003
Tsuji I, Kato H, Kobayashi H, et al. J. Phys. Chem. B, 2005, 109(15):7323-7329
doi: 10.1021/jp044722e
Torimoto T, Adachi T, Okazaki K, et al. J. Am. Chem. Soc., 2007, 129(41):12388-12389
doi: 10.1021/ja0750470
Tsuji I, Kato H, Kudo A. Chem. Mater., 2006, 18(7):1969-1975
doi: 10.1021/cm0527017
Liu H, Yuan J, Shangguan W F, et al. J. Phys. Chem. C, 2008, 112(23):8521-8523
doi: 10.1021/jp802537u
Wang Q Z, Liu H, Jiang L, et al. Catal. Lett., 2009, 131(1/2):160-163
Maeda K, Takata T, Hara M, et al. J. Am. Chem. Soc., 2005, 127(23):8286-8287
doi: 10.1021/ja0518777
Lee Y, Terashima H, Shimodaira Y, et al. J. Phys. Chem. C, 2007, 111(2):1042-1048
doi: 10.1021/jp0656532
Maeda K, Domen K. Chem. Mater., 2010, 22(3):612-623
doi: 10.1021/cm901917a
Yoshida M, Hirai T, Maeda K, et al. J. Phys. Chem. C, 2010, 114(36):15510-15515
doi: 10.1021/jp100106y
Liu G, Yang H G, Wang X W, et al. J. Am. Chem. Soc., 2009, 131(36):12868-12869
doi: 10.1021/ja903463q
Liu G, Sun C H, Yang H G, et al. Chem. Commun., 2010, 46(5):755-757
doi: 10.1039/B919895D
Pan J, Liu G, Lu G M, et al. Angew. Chem. Int. Ed., 2011, 50(9):2133-2137
doi: 10.1002/anie.v50.9
Pan J, Wu X, Wang L Z, et al. Chem. Commun., 2011, 47(29):8361-8363
doi: 10.1039/c1cc13034j
Jiao W, Xie Y P, Chen R Z, et al. Chem. Commun., 2013, 49(100):11770-11772
doi: 10.1039/c3cc46527f
Bi Y, Ouyang S, Umezawa N, et al. J. Am. Chem. Soc., 2011, 133(17):6490-6492
doi: 10.1021/ja2002132
Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26(9):1167-1170
doi: 10.1039/b202140d
Li R G, Zhang F X, Wang D G, et al. Nat. Commun., 2013, 4: 1432
doi: 10.1038/ncomms2401
Zhu J, Fan F T, Chen R T, et al. Angew. Chem. Int. Ed., 2015, 54(31):9111-9114
doi: 10.1002/anie.201504135
Yang H G, Sun C H, Qiao S Z, et al. Nature, 2008, 453(7195):638-641
doi: 10.1038/nature06964
Song H S, Zhang W J, Cheng C, et al. Cryst. Growth. Des., 2011, 11(1):147-153
doi: 10.1021/cg101062e
Kim H N, Kim T W, Kim I Y, et al. Adv. Funct. Mater., 2011, 21(16):3111-3118
doi: 10.1002/adfm.201100453
Lin C J, Chen S Y, Liou Y H. Electrochem. Commun., 2010, 12(11):1513-1516
doi: 10.1016/j.elecom.2010.08.021
Sun Y H, Zhao Q, Gao J Y, et al. Nanoscale, 2011, 3(10): 4418-4426
doi: 10.1039/c1nr10922g
Wei S Q, Chen Y Y, Ma Y Y, et al. J. Mol. Catal. A:Chem., 2010, 331(1/2):112-116
Cui Y F, Wang C, Liu G, et al. Mater. Lett., 2011, 65(14): 2284-2286
doi: 10.1016/j.matlet.2011.04.041
Yan W, Fan H Q, Yang C. Mater. Lett., 2011, 65(11):1595-1597
doi: 10.1016/j.matlet.2011.03.026
Agrawal M, Gupta S, Pich A, et al. Chem. Mater., 2009, 21(21):5343-5348
doi: 10.1021/cm9028098
Lin D D, Wu H, Zhang R, et al. J. Am. Ceram. Soc., 2010, 93(10):3384-3389
doi: 10.1111/jace.2010.93.issue-10
Cun W, Wang X M, Xu B Q, et al. J. Photochem. Photobiol. A, 2004, 168(1/2):47-52
Lü K Z, Li J, Qing X X, et al. J. Hazard. Mater., 2011, 189(1/2):329-335
Yan H J, Zhang X J, Zhou SQ, et al. J. Alloys Compd., 2011, 509(24):L232-L235
doi: 10.1016/j.jallcom.2011.03.181
Kim H I, Kim J, Kim W, et al. J. Phys. Chem. C, 2011, 115(19):9797-9805
doi: 10.1021/jp1122823
Wang Z Y, Huang B B, Dai Y, et al. J. Phys. Chem. C, 2009, 113(11):4612-4617
doi: 10.1021/jp8107683
Chen S F, Zhao W, Liu W, et al. Chem. Eng. J., 2009, 155(1/2):466-473
Chen S F, Zhao W, Liu W, et al. J. Sol-Gel Sci. Technol., 2009, 50(3):387-396
doi: 10.1007/s10971-009-1908-3
Chen S F, Zhao W, Liu W, et al. Appl. Surf. Sci., 2008, 255(5):2478-2484
doi: 10.1016/j.apsusc.2008.07.115
Wang X W, Liu G, Chen Z G, et al. Chem. Commun., 2009(23):3452-3454
doi: 10.1039/b904668b
Miyauchi M, Nukui Y, Atarashi D, et al. ACS Appl. Mater. Interfaces, 2013, 5(19):9770-9776
doi: 10.1021/am402929d
Zhang L J, Li S, Liu B K, et al. ACS Catal., 2014, 4(10): 3724-3729
doi: 10.1021/cs500794j
Wang J C, Yao H C, Fan Z Y, et al. ACS Appl. Mater. Interfaces, 2016, 8(6):3765-3775
doi: 10.1021/acsami.5b09901
Tada H, Mitsui T, Kiyonaga T, et al. Nat. Mater., 2006, 5(10):782-786
doi: 10.1038/nmat1734
Yu Z B, Xie Y P, Liu G, et al. J. Mater. Chem. A, 2013, 1(8):2773-2776
doi: 10.1039/c3ta01476b
Yun H J, Lee H, Kim N D, et al. ACS Nano, 2011, 5(5): 4084-4090
doi: 10.1021/nn2006738
Kobayashi R, Tanigawa S, Takashima T, et al. J. Phys. Chem. C, 2014, 118(39):22450-22456
doi: 10.1021/jp5069973
Wang Q, Hisatomi T, Ma S S K, et al. Chem. Mater., 2014, 26(14):4144-4150
doi: 10.1021/cm5011983
Iwase A, Ng Y H, Ishiguro Y, et al. J. Am. Chem. Soc., 2011, 133(29):11054-11057
doi: 10.1021/ja203296z
Jo W K, Natarajan T S. ACS Appl. Mater. Interfaces, 2015, 7(31):17138-17154
doi: 10.1021/acsami.5b03935
Xian J J, Li D Z, Chen J, et al. ACS Appl. Mater. Interfaces, 2014, 6(15):13157-13166
doi: 10.1021/am5029999
Wang X W, Yin L C, Liu G. Chem. Commun., 2014, 50(26): 3460-3463
doi: 10.1039/c4cc00044g
Wang Q, Hisatomi T, Jia Q, et al. Nat. Mater., 2016, 15: 611-615
doi: 10.1038/nmat4589
Huang J, Mulfort K L, Du P W, et al. J. Am. Chem. Soc., 2012, 134(40):16472-16475
doi: 10.1021/ja3062584
Zhu H M, Song N H, Lü H J, et al. J. Am. Chem. Soc., 2012, 134(28):11701-11708
doi: 10.1021/ja303698e
Xie Y P, Yu Z B, Liu G, et al. Energy Environ. Sci., 2014, 7(6):1895-1901
doi: 10.1039/c3ee43750g
Zhang J, Xu Q, Feng Z, et al. Angew. Chem. Int. Ed., 2008, 47(9):1766-1769
doi: 10.1002/(ISSN)1521-3773
Wang X, Xu Q, Li M R, et al. Angew. Chem. Int. Ed., 2012, 51(52):13089-13092
doi: 10.1002/anie.201207554
Wang D E, Li R G, Zhu J, et al. J. Phys. Chem. C, 2012, 116(8):5082-5089
doi: 10.1021/jp210584b
Lee J S, Choi W Y. J. Phys. Chem. B, 2005, 109(15):7399-7406
doi: 10.1021/jp044425+
Zhang F X, Maeda K, Takata T, et al. Catal. Today, 2012, 185(1):253-258
doi: 10.1016/j.cattod.2011.09.025
Inoue Y. Energy Environ. Sci., 2009, 2(4):364-386
doi: 10.1039/b816677n
Domen K, Kudo A, Onishi T, et al. J. Phys. Chem., 1986, 90(2):292-295
doi: 10.1021/j100274a018
Lalitha K, Sadanandam G, Kumari V D, et al. J. Phys. Chem. C, 2010, 114(50):22181-22189
doi: 10.1021/jp107405u
Sayama K, Hayashi H, Arai T, et al. Appl. Catal. B, 2010, 94(1/2):150-157
Arai T, Horiguchi M, Yanagida M, et al. J. Phys. Chem. C, 2009, 113(16):6602-6609
doi: 10.1021/jp8111342
Maeda K, Xiong A K, Yoshinaga T, et al. Angew. Chem. Int. Ed., 2010, 49(24):4096-4099
doi: 10.1002/anie.201001259
Zong X, Yan H J, Wu G P, et al. J. Am. Chem. Soc., 2008, 130(23):7176-7177
doi: 10.1021/ja8007825
Zong X, Han J F, Ma G J, et al. J. Phys. Chem. C, 2011, 115(24):12202-12208
doi: 10.1021/jp2006777
Zhang W, Wang Y B, Wang Z, et al. Chem. Commun., 2010, 46(40):7631-7633
doi: 10.1039/c0cc01562h
Tabata M, Maeda K, Ishihara T, et al. J. Phys. Chem. C, 2010, 114(25):11215-11220
doi: 10.1021/jp103158f
Zhang F X, Maeda K, Takata T, et al. Chem. Commun., 2010, 46(39):7313-7315
doi: 10.1039/c0cc02425b
Wang J, Li B, Chen J Z, et al. Appl. Surf. Sci., 2012, 259: 118-123
doi: 10.1016/j.apsusc.2012.07.003
Shen S H, Chen X B, Ren F, et al. Nanoscale Res. Lett., 2011, 6:290
doi: 10.1186/1556-276X-6-290
Yang J H, Yan H J, Wang X L, et al. J. Catal., 2012, 290: 151-157
doi: 10.1016/j.jcat.2012.03.008
Townsend T K, Browning N D, Osterloh F E. Energy Environ. Sci., 2012, 5(11):9543-9550
doi: 10.1039/c2ee22665k
Maeda K, Sakamoto N, Ikeda T, et al. Chem. Eur. J., 2010, 16(26):7750-7759
doi: 10.1002/chem.201000616
LIU En-Ke, ZHU Bing-Sheng, LUO Jin-Sheng. Physics of Semiconductor. 7th Ed. Beijing:Electronic Industry Press, 2011: 216-219
Luo M H, Yao W F, Huang C P, et al. J. Mater. Chem. A, 2015, 3(26):13884-13891
doi: 10.1039/C5TA00218D
Cui E T, Lu G X. J. Phys. Chem. C, 2013, 117(50):26415-26425
doi: 10.1021/jp4104933
Li Y H, Xing J, Chen Z J, et al. Nat. Commun., 2013, 4:2500
Ma S S K, Maeda K, Abe R, et al. Energy Environ. Sci., 2012, 5(8):8390-8397
doi: 10.1039/c2ee21801a
Yan H J, Yang J H, Ma G J, et al. J. Catal., 2009, 266(2): 165-168
doi: 10.1016/j.jcat.2009.06.024
Xie Y P, Liu G, Lu G Q, et al. Nanoscale, 2012, 4(4):1267-1270
doi: 10.1039/c2nr11846g
Zhao X, Lü L, Pan B C, et al. Chem. Eng. J., 2011, 170(2/3):381-394
Zhu L W, Zhou L K, Li H X, et al. Mater. Lett., 2013, 95: 13-16
doi: 10.1016/j.matlet.2013.01.004
Xiang Q J, Yu J G, Jaroniec M. Chem. Soc. Rev., 2012, 41(2):782-796
doi: 10.1039/C1CS15172J
Xie X Q, Kretschmer K, Wang G X. Nanoscale, 2015, 7(32):13278-13292
doi: 10.1039/C5NR03338A
Upadhyay R K, Soin N, Roy S S. RSC Adv., 2014, 4(8): 3823-3851
doi: 10.1039/C3RA45013A
An X Q, Yu J C. RSC Adv., 2011, 1(8):1426-1434
doi: 10.1039/c1ra00382h
Li Q, Guo B D, Yu J G, et al. J. Am. Chem. Soc., 2011, 133(28):10878-10884
doi: 10.1021/ja2025454
Iwashina K, Iwase A, Ng Y H, et al. J. Am. Chem. Soc., 2015, 137(2):604-607
doi: 10.1021/ja511615s
Yu Z, Lia F, Sun L C. Energy Environ. Sci., 2015, 8(3):760-775
doi: 10.1039/C4EE03565H
Borgarello E, Kiwi J, Pelizzetti E, et al. Nature, 1981, 289(5794):158-160
doi: 10.1038/289158a0
Maeda K, Eguchi M, Youngblood W J, et al. Chem. Mater., 2008, 20(21):6770-6778
doi: 10.1021/cm801807b
Zhang X, Peng T Y, Song S. J. Mater. Chem. A, 2016, 4(7): 2365-2402
doi: 10.1039/C5TA08939E
Willkomm J, Orchard K L, Reynal A. Chem. Soc. Rev., 2016, 45(1):9-23
doi: 10.1039/C5CS00733J
Abe R, Shinmei K, Hara K. Chem. Commun., 2009(24): 3577-3579
doi: 10.1039/b905935k
Tada H, Fujishima M, Kobayashi H. Chem. Soc. Rev., 2011, 40(7):4232-4243
doi: 10.1039/c0cs00211a
Wang G, Yang X, Qian F, et al. Nano Lett., 2010, 10(3): 1088-1092
doi: 10.1021/nl100250z
Sheng W, Sun B, Shi T, et al. ACS Nano, 2014, 8(7):7163-7169
doi: 10.1021/nn502121t
Qi L, Yu J, Jaroniec M. Phys. Chem. Chem. Phys., 2011, 13(19):8915-8923
doi: 10.1039/c1cp20079h
Yeh T F, Teng C Y, Chen S J, et al. Adv. Mater., 2014, 26(20):3297-3303
doi: 10.1002/adma.v26.20
Li H T, He X D, Kang Z H, et al. Angew. Chem. Int. Ed., 2010, 49(26):4430-4434
doi: 10.1002/anie.200906154
Zhang H, Huang H, Ming H, et al. J. Mater. Chem., 2012, 22(21):10501-10506
doi: 10.1039/c2jm30703k
Zhou N, López-Puente V, Wang Q, et al. RSC Adv., 2015, 5(37):29076-29097
doi: 10.1039/C5RA01819F
Warren S C, Thimsen E. Energy Environ. Sci., 2012, 5(1): 5133-5146
doi: 10.1039/C1EE02875H
Wang P, Huang B, Dai Y, et al. Phys. Chem. Chem. Phys., 2012, 14(28):9813-9825
doi: 10.1039/c2cp40823f
Kelly K L, Coronado E, Zhao L L, et al. J. Phys. Chem. B, 2003, 107(3):668-677
doi: 10.1021/jp026731y
Murphy C J, Gole A M, Stone J W, et al. Acc. Chem. Res., 2008, 41(12):1721-1730
doi: 10.1021/ar800035u
Biesso A, Qian W, Huang X H, et al. J. Am. Chem. Soc., 2009, 131(7):2442-2443
doi: 10.1021/ja8088873
Liu Z W, Hou W B, Pavaskar P, et al. Nano Lett., 2011, 11(3):1111-1116
doi: 10.1021/nl104005n
Wang P, Huang B B, Qin X Y, et al. Angew. Chem., Int. Ed., 2008, 47(41):7931-7933
doi: 10.1002/anie.v47:41
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028