Citation: YU Zhi-Qing, WANG Xun, TIAN Ang, LIU Yan-Xia, YANG He, XUE Xiang-Xin. Study on Ni-Doped Anatase by First Principle Method[J]. Chinese Journal of Inorganic Chemistry, ;2017, 33(1): 41-48. doi: 10.11862/CJIC.2017.015 shu

Study on Ni-Doped Anatase by First Principle Method

  • Corresponding author: XUE Xiang-Xin, xuexx@mail.neu.edu.cn
  • Received Date: 1 April 2016
    Revised Date: 22 October 2016

Figures(6)

  • The geometric structures, formation energies, electronic structures and magnetic properties of Ni-doped anatase, with different concentrations and doping methods, were studied by the first principle method under the framework of the spin density functional theory, combined with the crystal field theory. The results of formation energy calculation show that the oxygen environment, in the process of crystal growth, has an important influence on the structures of Ni-doping. Analysis of the state density and energy level track map showed that the valence states of Ni ion was different in different doping conditions. Impurity energy levels in the bandgap of all kinds of doping system are formed by the hybridization of Ni3d-O2p. When a doping Ni ion substitute lattice Ti, that will make the unit cell volume and the crystal stability decrease, absorption spectrum red shift, the system is paramagnetic. Interstitial Ni doping makes the unit cell volume increase, the absorption spectrum blue shift, and enables the band to move in the direction of low energy. At this time, the carrier occur n type-degeneration, the ability, of some Ti ions, of losing electrons declined, resulting in the making of Ti3+ ions, the system has magnetism.
  • 加载中
    1. [1]

      Gombac V, Rogatis L D, Gasparotto A, et al. Chem. Phys., 2007,339:111-123  doi: 10.1016/j.chemphys.2007.05.024

    2. [2]

      Yuan J, Fujisawa R, Tsujikawa S. Zairyo-to-kankyo, 1994,43: 433-440  doi: 10.3323/jcorr1991.43.433

    3. [3]

      Shen G X, Chen Y C, Lin L, et al. Electrochim. Acta, 2005,50:5083-5089  doi: 10.1016/j.electacta.2005.04.048

    4. [4]

      Sun M M, Chen Z Y, Yu J Q. Electrochim. Acta, 2013, 109:13-19  doi: 10.1016/j.electacta.2013.07.121

    5. [5]

      Zhang X X, Chen Q C, Tang J, et al. Sci. Rep., 2014,4:560-560

    6. [6]

      Yu S M, Guan X M, Wong H S P. IEEE Trans. Electron Devices, 2012,59:1183-1188  doi: 10.1109/TED.2012.2184544

    7. [7]

      Yang K S, Dai Y, Huang B B. Phys. Rev. B, 2007,76:195201(6pages)  doi: 10.1103/PhysRevB.76.195201

    8. [8]

      Geng H, Yin S W, Yang X, et al. J. Phys.:Condens. Matter, 2006,18:87-96  doi: 10.1088/0953-8984/18/1/006

    9. [9]

      Zhao L, Park S G, Magyari-kope B, et al. Appl. Phys. Lett., 2013,102:083506(1-4)  doi: 10.1063/1.4794083

    10. [10]

      Choi W Y, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98:13669-13679  doi: 10.1021/j100102a038

    11. [11]

      ZHAO Zong-Yan, LIU Qing-Ju, ZHANG Jin, et al. Acta Phys. Sin., 2007,56(11): 6592-6599

    12. [12]

      Yao Z P, Jia F Z, Tian S J, et al. ACS Appl. Mater. Interfaces, 2010,2:2617-2622  doi: 10.1021/am100450h

    13. [13]

      Visinescu C M, Sanjines R, lévy F, et al. Appl. Catal, B, 2005,60:155-162  doi: 10.1016/j.apcatb.2005.02.029

    14. [14]

      Pol R, Guerrero M, Garcia-Lecina E, et al. Appl. Catal, B, 2016,181:270-278  doi: 10.1016/j.apcatb.2015.08.006

    15. [15]

      ZHANG Xiao-Chao, ZHAO Li-Jun, FAN Cai-Mei, et al. Acta Phys. Sin., 2012, 61:077101(1-9)

    16. [16]

      Chen J, Lu G H, Cao H H, et al. Appl. Phys. Lett., 2008,93: 172504(1-3)  doi: 10.1063/1.3002291

    17. [17]

      Cho J H, Hwang T J, Joh Y G, et al. Appl. Phys. Lett., 2006, 88:092505(1-3)  doi: 10.1063/1.2179607

    18. [18]

      KneiB M, Jenderka M, Brachwitz K, et al. Appl. Phys. Lett., 2014,105:062103(1-5)  doi: 10.1063/1.4892811

    19. [19]

      Niishiro R, Kato H, Kudo A. Phys. Chem. Chem. Phys., 2005,7:2241-2245  doi: 10.1039/b502147b

    20. [20]

      Aryasetiawan F, Karlsson K, Jepsen O, et al. Phys. Rev. B, 2006,74:5106

    21. [21]

      RuizPreciado M A, Kassiba A, Morales-Acevedo A, et al. RSC Adv., 2015,5:17396-17404  doi: 10.1039/C4RA16400H

    22. [22]

      Yang J, Lv C Q, Guo Y, et al. J. Chem. Phys., 2012,136: 104107(1-14)  doi: 10.1063/1.3692292

    23. [23]

      Luttrell T, Halpegamage S, Tao J G, et al. Sci. Rep., 2014, 4:447-467

    24. [24]

      Yu J G, Zhou P, Li Q. Phys. Chem. Chem. Phys., 2013,15: 12040-12047  doi: 10.1039/c3cp44651d

    25. [25]

      Segall M D, Lindan P J D, Probert M J, et al. J. Phys: Condens. Matter., 2002,14:2717-2744  doi: 10.1088/0953-8984/14/11/301

    26. [26]

      Fan Z, Wang L, Wu T, et al. J. Am. Chem. Soc., 2010,132: 11856-11857  doi: 10.1021/ja103843d

    27. [27]

      Cheng H Z, Selloni A. J. Chem. Phys., 2009,131:9249-9260

    28. [28]

      WANG Hong-Ming, ZHENG Rui, LI Gui-Rong, et al. Chinese J. Inorg. Chem., 2015,31(11):2143-2151
       

    29. [29]

      Asahi R, Taga Y, Mannstadt W, et al. Phys. Rev. B, 2000, 61:7459-7465  doi: 10.1103/PhysRevB.61.7459

  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    12. [12]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    13. [13]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    14. [14]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

Metrics
  • PDF Downloads(0)
  • Abstract views(3585)
  • HTML views(685)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return