Citation: YANG Jia-Jia, JIANG Ke-Wang, LIN Xue-Mei, YING Zong-Rong, ZHANG Wen-Wen. Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2088-2094. doi: 10.11862/CJIC.2016.279 shu

Synthesis of g-C3N4/C Nanofibers by Electrospinning and Their Photodegradation Performance under Visible Light

  • Corresponding author: YING Zong-Rong, 
  • Received Date: 28 March 2016
    Available Online: 9 October 2016

  • g-C3N4/C composite nanofibers were prepared via a combination process of electrospinning, preoxidation and carbonization by using g-C3N4 nanosheets and polyacrylonitrile as raw materials. Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) were employed to analyze the structure and morphology of the as-synthesized nanofibers. And UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was used to assess their visible light response. The results show that the g-C3N4/C composite nanofibers exhibit good photocatalytic degradation activity toward rhodamine B under visible light, which originates from better ability of their partially amorphous carbon matrix to reduce the combination of the photogenerated electron and hole pair. The nanofiber membrane was not embrittled into powers or small flakes during the photocatalytic degradation process under stirring conditions, maintaining its integrity from begin to end. After several recovery and photocatalysis experiments, the membrane still maintained high photodegradation rate. This study reveals that the resulting nanofibers have excellent recycling stability to photodegradate rhodamine B under visible light.
  • 加载中
    1. [1]

      [1] Wang X C, Maeda K, Thomas A, et al. Nat. Mater., 2009,8(1):76-80

    2. [2]

      [2] CHEN Bo-Cai(陈博才), SHEN Yang(沈洋), WEI Jian-Hong (魏建红). Acta Phys.-Chim. Sin.(物理化学学报), 2016,32(6):1371-1382

    3. [3]

      [3] Cui Y J. Chin. J. Catal., 2015,36(3):372-379

    4. [4]

      [4] ZHAO Xue-Guo(赵学国), HUANG Li-Qun(黄丽群), LI Jia-Ke(李家科). Chinese J. Inorg. Chem.(无机化学学报), 2015, 31(12):2343-2348

    5. [5]

      [5] Liu L, Qi Y, Lu J, et al. Appl. Catal. B:Environ., 2016,183:133-141

    6. [6]

      [6] Liu L, Qi Y, Hu J, et al. Appl. Surf. Sci., 2015,351:1146-1154

    7. [7]

      [7] Bai X, Zong R, Li C, et al. Appl. Catal. B:Environ., 2014,147:82-91

    8. [8]

      [8] Maeda K, Wang X, Nishihara Y, et al. J. Phys. Chem. C, 2009,113(12):4940-4947

    9. [9]

      [9] Hughbanks T, Tian Y. Solid State Commun., 1995,96(5):321-325

    10. [10]

      [10] GUI Ming-Sheng(桂明生), WANG Peng-Fei(王鹏飞), YUAN Dong(袁东), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10):2057-2064

    11. [11]

      [11] Niu P, Zhang L, Liu G, et al. Adv. Funct. Mater., 2012,22(22):4763-4770.

    12. [12]

      [12] CHU Zeng-Yong(楚增勇), YUAN Bo(原博), YAN Ting-Nan (颜廷楠). J. Inorg. Mater.(无机材料学报), 2014,29(8):785-794

    13. [13]

      [13] Chen L, Huang D, Ren S, et al. Nanoscale, 2013,5(1):225-230

    14. [14]

      [14] Yang S, Gong Y, Zhang J, et al. Adv. Mater., 2013,25(17):2452-2456

    15. [15]

      [15] Li D, Xia Y. Adv. Mater., 2004,16(14):1151-1170

    16. [16]

      [16] Miao J, Miyauchi M, Simmons T, et al. J. Nanosci. Nanote-chnol., 2010,10(9):5507-5519

    17. [17]

      [17] LU Jian-Jian(卢建建), YING Zong-Rong(应宗荣), LIU Xin-Dong(刘信东), et al. Acta Phys-Chim. Sin.(物理化学学报), 2015,31(11):2099-2108

    18. [18]

      [18] SUN Li-Ping(孙丽萍), ZHAO Hui(赵辉), WANG Wen-Xue (王文学), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(4):757-762

    19. [19]

      [19] Nalbandian M, Zhang M, Sanchez J, et al. J. Mol. Catal. A:Chem., 2015,404:18-26

    20. [20]

      [20] Kim M, Kim Y, Lee K M, et al. Carbon, 2016,99:607-618

    21. [21]

      [21] ZHANG Jiao-Bo(张校菠), CHEN Ming-Hai(陈名海), ZHANG Jiao-Gang(张校刚), et al. Acta Phys-Chim. Sin.(物理化学学报), 2010,26(12):3169-3174

    22. [22]

      [22] Di Valentin C, Pacchioni G, Selloni A. Chem. Mater., 2005, 17(26):6656-6665

    23. [23]

      [23] Samadi M, Shivaee H A, Pourjavadi A, et al. Appl. Catal. A:Gen., 2013,466:153-160

    24. [24]

      [24] Lin Q, Li L, Liang S, et al. Appl. Catal. B:Environ., 2015, 163:135-142

    25. [25]

      [25] Lee H, Kim H, Kang S, et al. J. Ind. Eng. Chem., 2015,21:736-740

    26. [26]

      [26] Cui Y, Tang Y, Wang X. Mater. Lett., 2015,161:197-200

    27. [27]

      [27] Liu L, Qi Y, Hu J, et al. Mater. Lett., 2015,158:278-281

    28. [28]

      [28] LI Dong-Feng(李东风), WANG Hao-Jing(王浩静), WANG Xin-Kui(王心葵). Spectrosc. Spect. Anal.(光谱学与光谱分析), 2007,27(11):2249-2253

    29. [29]

      [29] Bourlinos A B, Giannelis E P, Sanakis Y, et al. Carbon, 2006,44(10):1906-1912

    30. [30]

      [30] Mousavi M, Habibi-Yangjeh A. J. Colloid Interface Sci., 2016,465:83-92

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return