Citation: CAI Sheng-Rong, WANG Xiao-Fei, ZHU Ding, MU Shi-Jia, ZHANG Kai-Fang, HUANG Li-Wu, CHEN Yun-Gui. CoOOH as Cathode Catalyst for High Performance Non-Aqueous Li-O2 Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2082-2087. doi: 10.11862/CJIC.2016.272 shu

CoOOH as Cathode Catalyst for High Performance Non-Aqueous Li-O2 Batteries

  • Corresponding author: ZHU Ding,  CHEN Yun-Gui, 
  • Received Date: 26 July 2016
    Available Online: 7 October 2016

    Fund Project:

  • CoOOH was synthesized by a simple one-step co-precipitation method, and used as cathode catalyst in non-aqueous Li-O2 batteries. The introduction of CoOOH could catalyze the oxygen reduction reaction (ORR) upon discharge, making the CoOOH-contained cathode display a high discharge capacity of 5 093 mAh·g-1, which was about 1.7 times higher than that of the CoOOH-free cathode. Furthermore, the CoOOH-contained cathode exhibited a significantly reduced recharge overpotential (460 mV), enhancing recharge-ability. Thus, the reversibility was improved, and the cycling performance was ameliorated.
  • 加载中
    1. [1]

      [1] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2012,11:19-29

    2. [2]

      [2] YANG Feng-Yu(杨凤玉), ZHANG Lei-Lei(张蕾蕾), XU Ji-Jing(徐吉静), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(8):1563-1573

    3. [3]

      [3] Ogasawara T, Débart A, Holzapfel M, et al. J. Am. Chem. Soc., 2006,128(4):1390-1393

    4. [4]

      [4] Gao R, Zhu J Z, Xiao X L, et al. J. Phys. Chem. C, 2015, 119(9):4516-4523

    5. [5]

      [5] Su W W, Wang W, Li Y L, et al. Mater. Lett., 2016,180:203-206

    6. [6]

      [6] Park M, Sun H, Lee H, et al. Adv. Energy Mater., 2012,2(7):780-800

    7. [7]

      [7] Prabu M, Ketpang K, Shanmugam S. Nanoscale, 2014,6(6):3173-3181

    8. [8]

      [8] Kwak W J, Lau K C, Shin C D, et al. ACS Nano, 2015,9(4):4129-4137

    9. [9]

      [9] Hu X F, Han X P, Hu X, et al. Nanoscale, 2014,6(7):3522-3525

    10. [10]

      [10] JIANG Jie(蒋颉), LIU Xiao-Fei(刘晓飞), ZHAO Shi-Yong (赵世勇), et al. Acta Chim. Sinica(化学学报), 2014,4:417-426

    11. [11]

      [11] Jiang J, He P, Tong S F, et al. NPG Asia Mater., 2016,8:e239

    12. [12]

      [12] Kuang P, Li L Y, Chen C G, et al. Mater. Lett., 2016,176:97-100

    13. [13]

      [13] Tong S F, Zheng M B, Lu Y, et al. J. Mater. Chem. A, 2015,3(31):16177-16182

    14. [14]

      [14] Zhang L L, Zhang X B, Wang Z L, et al. Chem. Commun., 2012,48(61):7598-7600

    15. [15]

      [15] Zhang M, Xu Q, Sang L, et al. Chin. Sci. Bull., 2014,59(24):2973-2979

    16. [16]

      [16] Li J X, Wen W W, Zou M Z, et al. J. Alloys Compd., 2015, 639:428-434

    17. [17]

      [17] Zhu L, Wu W Y, Zhu Y S, et al. J. Phys. Chem. C, 2015, 119(13):7069-7075

    18. [18]

      [18] Zhu D, Zhang L, Song M, et al. J. Solid State Electron., 2013,17(11):2865-2870

    19. [19]

      [19] Wang X F, Cai S R, Zhu D, et al. RSC Adv., 2015,5(107):88485-88491

    20. [20]

      [20] Black R, Lee J H, Adams B, et al. Angew. Chem. Int. Ed., 2013,125(1):410-414

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(2)
  • Abstract views(428)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return