Citation:
WANG Yu-Xia, QIU Dan, XI Sai-Fei, DING Zheng-Dong, GU Zhi-Guo, LI Zai-Jun. Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites[J]. Chinese Journal of Inorganic Chemistry,
;2016, 32(11): 1965-1972.
doi:
10.11862/CJIC.2016.245
-
The in-situ growth method were used to produce the[Fe(Htrz)2(trz)](BF4)-GO nanocomposites due to the abundant oxygen functional groups on the surface of the GO templates. The[Fe(Htrz)2(trz)](BF4)-GO nanocomposites have been characterized by PXRD, FTIR, SEM, TEM, Raman spectra. The peaks of FTIR and PXRD patterns of the nanocomposites are nearly the superposition of the spectra of individual GO and[Fe(Htrz)2(trz)](BF4), demonstrating the successful formation of spin crossover-graphene oxide nanocomposites. SEM and TEM analysis intuitively shows the cubic[Fe(Htrz)2(trz)](BF4) nanoparticles uniformly anchored on the surface of GO. Additionally, with the assembly time increasing, the quantity and size of[Fe(Htrz)2(trz)](BF4) on the surface of the GO increase gradually. Raman spectra indicates that the intensity ratio of the D to G band (ID/IG) increases after the[Fe(Htrz)2(trz)](BF4) loaded onto the surface of GO, which reveals that the defects in GO materials structures increase, and the interaction between[Fe(Htrz)2(trz)](BF4) nanoparticles and GO strengthens. Magnetic measurement manifests the transition temperatures of SCO-GO nanocomposites with different assembly time (1, 6, 12 h) are 381.1, 381.5 and 382.4 K in warming, 345.9, 345.0 and 344.8 K in cooling with the hysteresis width of 35.2, 36.5 and 37.6 K, respectively. This is attributed to the variation in the capacity and size of[Fe(Htrz)2(trz)](BF4) in SCO-GO nanocomposites with different assembly time. The result of DSC analysis is consistent with the magnetic result, confirming that the spin transition temperatures of SCO-GO nanocomposites move to high temperature.
-
-
-
[1]
[1] Gütlich P, Garcia Y, Goodwin H A. Chem. Soc. Rev., 2000, 29:419-427
-
[2]
[2] Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011,40:3313-3335
-
[3]
[3] Sato O, Tao J, Zhang Y Z. Angew. Chem. Int. Ed., 2007,46: 2152-2187
-
[4]
[4] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007,36:770-818
-
[5]
[5] Halcrow M A. Chem. Soc. Rev., 2011,40:4119-4142
-
[6]
[6] Ruiz E. Phy. Chem. Chem. Phy., 2014,16:14-22
-
[7]
[7] Martinho P N, Rajnak C, Ruben M. Spin-Crossover Materials, 2013:375-404
-
[8]
[8] (a) Chen Y, Ma J G, Zhang J J, et al. Chem. Commun., 2010, 46:5073-5075(b) Martinez V, Boldog I, Gaspar A B, et al. Chem. Mater., 2010,22:4271-4281(c) Titos-Padilla S, Herrera J M, Chen X W, et al. Angew. Chem. Int. Ed., 2011,50:3290-3293(d) Faulmann C, Chahine J, Malfant I, et al. Dalton Trans., 2011,40:2480-2485
-
[9]
[9] Rao C N R, Sood A K, Subrahmanyam K S, et al. Angew. Chem. Int. Ed., 2009,48:7752-7777
-
[10]
[10] Zhu Y, Murali S, Cai W, et al. Adv. Mater., 2010,22:3906-3924
-
[11]
[11] Huang X, Yin Z, Wu S, et al. Small, 2011,7:1876-1902
-
[12]
[12] (a) Yu L, Chen J, Liang Z, et al. Sep. Purif. Technol., 2016,171:80-87(b) Li M, Yin W, Han X, et al. J. Solid State Electrochem., 2016,20:1941-1948(c) Tai H, Zhen Y, Liu C, et al. Sens. Actuators B:Chem., 2016,230:501-509
-
[13]
[13] (a) Yadav H M, Kim J S. J. Alloys Compd., 2016,688:123-129(b) Yan N, Capezzuto F, Lavorgna M, et al. Nanoscale, 2016,8:10783-10791
-
[14]
[14] Qiu D, Ren D H, Gu L, et al. RSC Adv., 2014,4: 31323-31327
-
[15]
[15] Wick P, Louw-Gaume A E, Kucki M, et al. Angew. Chem. Int. Ed., 2014,53:7714-7718
-
[16]
[16] Cong H P, He J J, Lu Y, et al. Small, 2010,6:169-173
-
[17]
[17] (a) Chantharasupawong P, Philip R, Narayanan N T, et al. J. Phys. Chem. C, 2012,116:25955-25961(b) Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009,110: 132-145
-
[18]
[18] Murashima Y, Karim M R, Saigo N, et al. Inorg. Chem. Front., 2015,2:886-892
-
[19]
[19] Cote L J, Kim J, Tung V C, et al. Pure Appl. Chem., 2010,83:95-110
-
[20]
[20] Erickson K, Erni R, Lee Z, et al. Adv. Mater., 2010,22: 4467-4472
-
[21]
[21] Bhawal P, Ganguly S, Chaki T K, et al. RSC Adv., 2016,6: 20781-20790
-
[22]
[22] Petit C, Bandosz T J. J. Mater. Chem., 2009,19:6521-6528
-
[23]
[23] Chen D, Feng H, Li J. Chem. Rev., 2012,112:6027-6053
-
[24]
[24] (a) Lavrenova L G, Shakirova O G. Eur. J. Inorg. Chem., 2013,2013:670-682(b) Shepherd H J, Molnár G, Nicolazzi W, et al. Eur. J. Inorg. Chem., 2013,2013:653-661(c) Kroeber J, Audiere J P, Claude R, et al. Chem. Mater., 1994,6:1404-1412
-
[25]
[25] (a) Bartual-Murgui C, Natividad E, Roubeau O. J. Mater. Chem. C, 2015,3:7916-7924(b) Grosjean A, Négrier P, Bordet P, et al. Eur. J. Inorg. Chem., 2013,2013:796-802(c) Durand P, Pillet S, Bendeif E E, et al. J. Mater. Chem. C, 2013,1:1933-1942(d) Giménez-Marqués M, de Larrea M L G S, Coronado E. J. Mater. Chem. C, 2015,3:7946-7953
-
[26]
[26] (a) Lefter C, Tan R, Dugay J, et al. Phys. Chem. Chem. Phys., 2015,17:5151-5154(b) Nagy V, Suleimanov I, Molnár G, et al. J. Mater. Chem. C, 2015,3:7897-7905(c) Qiu D, Gu L, Sun X L, et al. RSC Adv., 2014,4:61313-61319
-
[27]
[27] (a) Coronado E, Galán-Mascarós J R, Monrabal-Capilla M, et al. Adv. Mater., 2007,19:1359-1361(b) Dugay J, Giménez-Marqués M, Kozlova T, et al. Adv. Mater., 2015,27:1288-1293
-
[28]
[28] (a) Bian Z, Xu J, Zhang S, et al. Langmuir, 2015,31:7410-7417(b) Zhou Q, Zhao Z, Wang Z, et al. Nanoscale, 2014,6: 2286-2291(c) Yang J, Shen X, Zhu G, et al. RSC Adv., 2014,4:386-394
-
[29]
[29] Sun Y, Shao D, Chen C, et al. Environ. Sci. Technol., 2013,47:9904-9910
-
[30]
[30] (a) Dutta A, Ouyang J. ACS Catal., 2015,5:1371-1380(b) Lin T W, Tasi T T, Chang P L, et al. ACS Appl. Mater. Interfaces, 2016,8:8315-8322(c) Chen S, Zhu J, Wu X, et al. ACS Nano, 2010,4:2822-2830
-
[31]
[31] Peng H, Molnár G, Salmon L, et al. Eur. J. Inorg. Chem., 2015,2015:3336-3342
-
[32]
[32] (a) Wang Z, Wei R, Liu X. J. Mater. Sci., 2016,51:4682-4690(b) Chen W, Yan L. Nanoscale, 2010,2:559-563
-
[33]
[33] Galán-Mascarós J R, Coronado E, Forment-Aliaga A, et al. Inorg. Chem., 2010,49:5706-5714
-
[34]
[34] (a) Kahn O, Martinez C J. Science, 1998,279:44-48(b) Wang Y X, Qiu D, Xi S F, et al. Chem. Commun., 2016, 52:8034-8037
-
[35]
[35] Volatron F, Catala L, Rivière E, et al. Inorg. Chem., 2008,47:6584-6586
-
[36]
[36] (a) Forestier T, Kaiba A, Pechev S, et al. Chem. Eur. J., 2009,15:6122-6130(b) Neville S M, Etrillard C, Asthana S, et al. Eur. J. Inorg. Chem., 2010,2010:282-288
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[7]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[8]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[9]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[10]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[11]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[12]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[13]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[14]
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
-
[15]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[16]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[17]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[18]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[19]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[20]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(482)
- HTML views(52)