Citation: WANG Yue, ZOU Xiao-Chuan, WANG Cun, SHI Yong-Fang. Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2151-2157. doi: 10.11862/CJIC.2016.233 shu

Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere

  • Corresponding author: WANG Yue,  SHI Yong-Fang, 
  • Received Date: 19 July 2016
    Available Online: 17 September 2016

    Fund Project:

  • 3D metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere were synthesized by the thermolysis method. The obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), and the photocatalytic activity of AgInS2 were investigated. Furthermore, the possible growth mechanism of metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere was also proposed by means of thermogravimetric thermogravimetric and differential thermal analysis (TG-DTA). The results indicated that both the reaction temperature and feed ratio of metallic ion (nM/nIn) had an influence on the formation of pure-phase MInS2, and the prepared AgInS2 flowerlike microsphere could well degrade methylene blue (MB) under visible light irradiation.
  • 加载中
    1. [1]

      [1] Zeng Z, Wang A Q, Ping L L, et al. Mater. Lett., 2015,141:225-227

    2. [2]

      [2] Peng S, Zhang S, Mhaisalkar S G, et al. Phys. Chem. Chem. Phys., 2012,14:8523-8529

    3. [3]

      [3] Liu B J, Li X Y, Zhao Q D, et al. Appl. Catal. B, 2016,185:1-10

    4. [4]

      [4] Chevallier T, Blevennec G L, Chandezon F. Nanoscale, 2016, 8:7612-7620

    5. [5]

      [5] Wu L, Chen S Y, Fan F J, et al. J. Am. Chem. Soc., 2016, 138:5576-5584

    6. [6]

      [6] SUN Qian(孙倩), GUAN Rong-Feng(关荣锋), ZHANG Da-Feng(张大峰). J. Synth. Cryst.(人工晶体学报), 2013,2(1):65-71

    7. [7]

      [7] Lei S J, Wang C Y, Liu L, et al. Chem. Mater., 2013,25:2991-2997

    8. [8]

      [8] Kruszynska M, Borchert H, Parisi J, et al. J. Am. Chem. Soc., 2010,132(45):15976-15986

    9. [9]

      [9] (a)Mohadesi A, Ranjbar M, Karimi M A. J. Mater. Sci.-Mater. Electron., 2016,27:522-525(b)Tang A W, Hu Z L, Yin Z, et al. Dalton Trans., 2015,44:9251-9259

    10. [10]

      [10] Liu Z P, Tang K B, Wang D K, et al. Nanoscale, 2013,5:1570-1575

    11. [11]

      [11] Liu Z P, Wang L L, Hao Q Y, et al. CrystEngComm, 2013,15:7192-7198

    12. [12]

      [12] ZOU Xue-Jue(邹学军), DONG Yu-Ying(董玉瑛), RANG Chun-Qiu(冉春秋), et al. J. Wuhan Univ.:Nat. Sci. Ed.(武汉大学学报:理学版), 2016,62(1):92-96

    13. [13]

      [13] Hu H M,Yang B J, Liu X Y, et al. Inorg. Chem. Commun., 2004,7:563-565

    14. [14]

      [14] Sheng X, Wang L, Luo Y P, et al. Nanoscale Res. Lett., 2011,6:562

    15. [15]

      [15] Abdelhady A L, Malik M A, O'Brien P. J. Mater. Chem., 2012,22(9):3781-3785

    16. [16]

      [16] Connor S T, Hsu C M, Weil B D, et al. J. Am. Chem. Soc., 2009,131(13):4962-4966

    17. [17]

      [17] Qi Y X, Liu Q C, Tang K B, et al. J. Phys. Chem. C, 2009, 113:3939-3944

    18. [18]

      [18] Delgado G, Mora A J, Pineda C, et al. Mater. Res. Bull., 2001,36:2507-2517

    19. [19]

      [19] Tomić S, Bernasconi L, Searle B G, et al. J. Phys. Chem. C, 2014,118:14478-14484

    20. [20]

      [20] Shan J N, Ju Y G. Appl. Phys. Lett., 2007,91(12):123103

    21. [21]

      [21] Jia C J, Sun L D, You L P, et al. J. Phys. Chem. B, 2005, 109(8):3284-3290

    22. [22]

      [22] (a)ZOU Zheng-Guang(邹正光), GAO Yao(高耀), LONG Fei (龙飞). J. Synth. Cryst.(人工晶体学报), 2015,44(8):2164-2170(b)Shi Y F, Wang Y, Wu L M. J. Phys. Chem. C, 2013,117:20054-20059

    23. [23]

      [23] Lu X, Zhuang Z, Peng Q, et al. CrystEngComm, 2011,13(12):4039-4045

    24. [24]

      [24] Fang F, Chen L, Chen Y B, et al. J. Phys. Chem. C, 2010, 114:2393-2397

    25. [25]

      [25] Liu J J, Chen S F, Liu Q Z, et al. Comp. Mater. Sci., 2014, 91:159-164

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(0)
  • Abstract views(361)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return