Citation: WANG Yue, ZOU Xiao-Chuan, WANG Cun, SHI Yong-Fang. Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2151-2157. doi: 10.11862/CJIC.2016.233 shu

Thermolysis Synthesis and Growth Mechanism of Metastable MInS2 (M=Ag, Cu) Flowerlike Microsphere

  • Corresponding author: WANG Yue,  SHI Yong-Fang, 
  • Received Date: 19 July 2016
    Available Online: 17 September 2016

    Fund Project:

  • 3D metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere were synthesized by the thermolysis method. The obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), and the photocatalytic activity of AgInS2 were investigated. Furthermore, the possible growth mechanism of metastable orthorhombic AgInS2 and hexagonal CuInS2 flowerlike microsphere was also proposed by means of thermogravimetric thermogravimetric and differential thermal analysis (TG-DTA). The results indicated that both the reaction temperature and feed ratio of metallic ion (nM/nIn) had an influence on the formation of pure-phase MInS2, and the prepared AgInS2 flowerlike microsphere could well degrade methylene blue (MB) under visible light irradiation.
  • 加载中
    1. [1]

      [1] Zeng Z, Wang A Q, Ping L L, et al. Mater. Lett., 2015,141:225-227

    2. [2]

      [2] Peng S, Zhang S, Mhaisalkar S G, et al. Phys. Chem. Chem. Phys., 2012,14:8523-8529

    3. [3]

      [3] Liu B J, Li X Y, Zhao Q D, et al. Appl. Catal. B, 2016,185:1-10

    4. [4]

      [4] Chevallier T, Blevennec G L, Chandezon F. Nanoscale, 2016, 8:7612-7620

    5. [5]

      [5] Wu L, Chen S Y, Fan F J, et al. J. Am. Chem. Soc., 2016, 138:5576-5584

    6. [6]

      [6] SUN Qian(孙倩), GUAN Rong-Feng(关荣锋), ZHANG Da-Feng(张大峰). J. Synth. Cryst.(人工晶体学报), 2013,2(1):65-71

    7. [7]

      [7] Lei S J, Wang C Y, Liu L, et al. Chem. Mater., 2013,25:2991-2997

    8. [8]

      [8] Kruszynska M, Borchert H, Parisi J, et al. J. Am. Chem. Soc., 2010,132(45):15976-15986

    9. [9]

      [9] (a)Mohadesi A, Ranjbar M, Karimi M A. J. Mater. Sci.-Mater. Electron., 2016,27:522-525(b)Tang A W, Hu Z L, Yin Z, et al. Dalton Trans., 2015,44:9251-9259

    10. [10]

      [10] Liu Z P, Tang K B, Wang D K, et al. Nanoscale, 2013,5:1570-1575

    11. [11]

      [11] Liu Z P, Wang L L, Hao Q Y, et al. CrystEngComm, 2013,15:7192-7198

    12. [12]

      [12] ZOU Xue-Jue(邹学军), DONG Yu-Ying(董玉瑛), RANG Chun-Qiu(冉春秋), et al. J. Wuhan Univ.:Nat. Sci. Ed.(武汉大学学报:理学版), 2016,62(1):92-96

    13. [13]

      [13] Hu H M,Yang B J, Liu X Y, et al. Inorg. Chem. Commun., 2004,7:563-565

    14. [14]

      [14] Sheng X, Wang L, Luo Y P, et al. Nanoscale Res. Lett., 2011,6:562

    15. [15]

      [15] Abdelhady A L, Malik M A, O'Brien P. J. Mater. Chem., 2012,22(9):3781-3785

    16. [16]

      [16] Connor S T, Hsu C M, Weil B D, et al. J. Am. Chem. Soc., 2009,131(13):4962-4966

    17. [17]

      [17] Qi Y X, Liu Q C, Tang K B, et al. J. Phys. Chem. C, 2009, 113:3939-3944

    18. [18]

      [18] Delgado G, Mora A J, Pineda C, et al. Mater. Res. Bull., 2001,36:2507-2517

    19. [19]

      [19] Tomić S, Bernasconi L, Searle B G, et al. J. Phys. Chem. C, 2014,118:14478-14484

    20. [20]

      [20] Shan J N, Ju Y G. Appl. Phys. Lett., 2007,91(12):123103

    21. [21]

      [21] Jia C J, Sun L D, You L P, et al. J. Phys. Chem. B, 2005, 109(8):3284-3290

    22. [22]

      [22] (a)ZOU Zheng-Guang(邹正光), GAO Yao(高耀), LONG Fei (龙飞). J. Synth. Cryst.(人工晶体学报), 2015,44(8):2164-2170(b)Shi Y F, Wang Y, Wu L M. J. Phys. Chem. C, 2013,117:20054-20059

    23. [23]

      [23] Lu X, Zhuang Z, Peng Q, et al. CrystEngComm, 2011,13(12):4039-4045

    24. [24]

      [24] Fang F, Chen L, Chen Y B, et al. J. Phys. Chem. C, 2010, 114:2393-2397

    25. [25]

      [25] Liu J J, Chen S F, Liu Q Z, et al. Comp. Mater. Sci., 2014, 91:159-164

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    7. [7]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    8. [8]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    9. [9]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    10. [10]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    16. [16]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(0)
  • Abstract views(585)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return