Citation: XU Na, CHEN Zhe, SUO Zhong-Yuan, TAN Nai-Di. Effect of Intrinsic Defects on Electrical and Optical Properties of CdS Thin Films Deposited by Chemical Bath Deposition[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(1): 111-116. doi: 10.11862/CJIC.2016.005 shu

Effect of Intrinsic Defects on Electrical and Optical Properties of CdS Thin Films Deposited by Chemical Bath Deposition

  • Corresponding author: TAN Nai-Di, tannaidi@hotmail.com
  • Received Date: 27 August 2015
    Revised Date: 19 October 2015

Figures(6)

  • CdS thin films were deposited on soda-lime glass (SLG) substrates by chemical bath deposition (CBD). Effects of intrinsic defects on electrical and optical properties of CdS thin films deposited at various concentration of CdSO4 in solution were systemically investigated. Photoluminescence (PL), UV-Visible spectrophotometer and Hall-effect system were used to study intrinsic defects, optical and electrical properties of CdS thin films. Two intrinsic defects (Cdi and VS) were found to be existed in CdS films using photoluminescence (PL), and these defects are donor defects. It is found that the intrinsic defects (VS) decrease with the reduction of CdSO4 concentration. The variation of the intrinsic defects results in the shifts of transmittance and conductivity. According to the related equations of transmittance, it is indicated that the transmittance is inversely proportional to conductivity of semiconductor materials. Therefore, the decrease of donor defects (VS) results in the reduction of conductivity and significant increase of the transmittance of CdS thin films, well supporting our experimental results.
  • 加载中
    1. [1]

      Singh O P, Muhunthan N, Singh V N, et al. Mater. Chem. Phys., 2014, 146:452-455

    2. [2]

      Suryawanshi M P, Agawane G L, Bhosale S M, et al. Mater. Technol., 2013, 28:98-109

    3. [3]

      Shirakata S, Ohkubo K, Ishii Y, et al. Sol. Energy Mater. Sol. Cells, 2009, 93:988-992

    4. [4]

      Ghosh B, Ghosh D, Hussain S, et al. Mater. Sci. Semicond. Process., 2014, 24:74-82

    5. [5]

      Sho S, Hiroyuki O, Kouichi I, et al. Jpn. J. Appl. Phys., 2014, 53:05FW11

    6. [6]

      Akiko A, Masakazu Y, Sho S. Jpn. J. Appl. Phys., 2014, 53: 05FW12

    7. [7]

      de Melo O, Hernández L, Zelaya-Angel O, et al. Appl. Phys. Lett., 1994, 65:1278-1280

    8. [8]

      Boyle D S, Bayer A, Heinrich M R, et al. Thin Solid Films, 2000, 361-362:150-154  doi: 10.1016/S0040-6090(99)00789-0

    9. [9]

      Cao M, Sun Y, Wu J, et al. J. Alloys Compd., 2010, 508:297-300

    10. [10]

      Tsai C T, Chuu D S, Chen G L, et al. J. Appl. Phys., 1996, 79:9105-9109

    11. [11]

      Cortes A, Gómez H, Marotti R E, et al. Sol. Energy Mater. Sol. Cells, 2004, 82:21-34

    12. [12]

      Abken A E, Halliday D P, Durose K. J. Appl. Phys., 2009, 105:064515

    13. [13]

      Seo W O, Jung Y, Kim J, et al. Appl. Phys. Lett., 2014, 104: 133902

    14. [14]

      Subba Ramaiah K, Pilkington R D, Hill A E, et al. Mater. Chem. Phys., 2001, 68:22-30

    15. [15]

      Ortega-Borges R, Lincot D. J. Electrochem. Soc., 1993, 140: 3464-3473

    16. [16]

      Kim M, Min B K, Kim C D, et al. Curr. Appl. Phys., 2010, 10:S455-S458

    17. [17]

      Muthusamy M, Muthukumaran S, Ashokkumar M. Ceram. Int., 2014, 40:10657-10666

    18. [18]

      Ariza-Calderon H, Lozada-Morales R, Zelaya-Angel O, et al. J. Vac. Sci. Technol. A, 1996, 14:2480-2482

    19. [19]

      Vigil O, Riech I, Garcia-Rocha M, et al. J. Vac. Sci. Technol. A, 1997, 15:2282-2286

    20. [20]

      Aguilar-Hernández J, Contreras-Puente G, Morales-Acevedo A, et al. Semicond. Sci. Tech., 2003, 18:111-115

    21. [21]

      Agata M, Kurase H, Hayashi S, et al. Solid State Commun., 1990, 76:1061-1065

    22. [22]

      Mejía-García C, Escamilla-Esquivel A, Contreras-Puente G, et al. J. Appl. Phys., 1999, 86:3171-3174

    23. [23]

      LIU En-Ke, ZHU Bing-Sheng, LUO Jin-Sheng. Semiconductor Physics. Beijing: Electronic Industry Press, 2012.

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    7. [7]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    10. [10]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(0)
  • Abstract views(770)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return