Citation: GOU Lei, ZHAO Kun, MAO Yi-Yang, XIE Rong, FAN Xiao-Yong, LI Dong-Lin, MA Shou-Long, TIAN Miao. Copolymer Template-Assisted Synthesis of Porous Li2FeSiO4@C/CNTs Nanocomposite as Cathode Material with High Rate Capability[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2401-2410. doi: 10.11862/CJIC.2015.286 shu

Copolymer Template-Assisted Synthesis of Porous Li2FeSiO4@C/CNTs Nanocomposite as Cathode Material with High Rate Capability

  • Corresponding author: LI Dong-Lin, 
  • Received Date: 10 July 2015
    Available Online: 14 August 2015

    Fund Project: 国家自然科学基金(No.21073021,21473014,21103013) (No.21073021,21473014,21103013)教育部科技创新工程重大项目培育资金(No.708084) (No.708084)中央高校基础研究经费 (No.0009-2014G1311085)资助项目。 (No.0009-2014G1311085)

  • Li2FeSiO4@C/CNTs (LFS@C/CNTs) nanocomposite was synthesized by a sol-gel method. A triblock copolymer P123 was used as the direction agent for nanopores and carbon source, and carbon nanotubes were used as conductive wires to further increase the conductivity of the material. The resulting LFS@C/CNTs nanocomposite possesses not only a nanoporous sponge-like structure for improving Li-ions transport by means of liquid electrolyte, but also a 3D self-bridged conduction hybrid network consisted of amorphous carbon coating and graphitized CNTs for electron fast transport that ultimately improves the high rate capability and cycling performance. As a result, the porous LFS@C/CNTs nanocomposite compared with nanoporous LFS@C exhibits a remarkable improvement in high-rate capability. The LFS@C/CNTs nanocomposite with 4wt% of CNTs delivers a specific discharge capacity of approximately 182 mAh·g-1 at 0.1C in the voltage window of 1.5~4.5 V, and the specific discharge capacity at 10C after 70 cycles maintains at 117 mA·h·g-1, which is more than two times that of LFS@C (55 mAh·g-1) as a cathode material for high power lithium ion battery.
  • 加载中
    1. [1]

      [1] Nytn A, Abouimrane A, Armand M, et al. Electrochem. Commun., 2005,7(2):156-160

    2. [2]

      [2] Huang X B, Li X, Wang H Y, et al. Electrochim. Acta, 2010,55(24):7362-7366

    3. [3]

      [3] Wu X Z, Jiang X, Huo Q S, et al. Electrochim. Acta, 2012,80:50-55

    4. [4]

      [4] Deng C, Zhang S, Zhao G S, et al. J. Electrochem. Soc., 2013,160:A1457-A1464

    5. [5]

      [5] Dominko R. J. Power Sources, 2008,184(2):462-468

    6. [6]

      [6] Gong Z L, Li Y X, He G N, et al. Electrochem. Solid-State Lett., 2008,11(5):A60-A63

    7. [7]

      [7] Larsson P, Ahuja R, Nytn A, et al. Electrochem. Commun., 2006,8(5):797-800

    8. [8]

      [8] Bai J Y, Gong Z L, Lü D P, et al. J. Mater. Chem., 2012,22 (24):12128-12132

    9. [9]

      [9] Li D L, Xie R, Tian M, et al. J. Mater. Chem. A, 2014,2: 4375-4383

    10. [10]

      [10] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010,22(20):5754-5761

    11. [11]

      [11] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069

    12. [12]

      [12] Delacourt C, Poizot P, Levasseur S, et al. Solid-State Lett., 2006,9(7):A352-A355

    13. [13]

      [13] Zhu H, Wu X, Zan L, et al. Electrochim. Acta, 2014,117: 34-40

    14. [14]

      [14] Fan X Y, Li Y, Wang J J, et al. J. Alloys Compd., 2010,493:77-80

    15. [15]

      [15] Deng C, Zhang S, Yang S Y, et al. J. Power Sources, 2011,196(1):386-392

    16. [16]

      [16] Hao H, Wang J B, Liu J L, et al. J. Power Sources, 2012,210:397-401

    17. [17]

      [17] Dominko R, Conte D E, Hanzel D, et al. J. Power Sources, 2008,178(2):842-847

    18. [18]

      [18] Bindumadhavan K, Srivastava S K, Mahanty S. Chem. Comm., 2013,49:1823-1825

    19. [19]

      [19] Tang M, Yuan A, Zhao H, Xu J. J. Power Sources, 2013,235:5-13

    20. [20]

      [20] Li X, Qu M Z, Huai Y J, et al. Electrochim. Acta, 2010,55 (8):2978-2982

    21. [21]

      [21] Chen M, Du C Y, Song B, et al. J. Power Sources, 2013,223:100-106

    22. [22]

      [22] Zhou H T, Mari-Ann E, Fride V B. Solid State Ionics, 2012,225:585-589

    23. [23]

      [23] Sun X R, Li J J, Shi C S, et al. J. Power Sources, 2012,220: 264-268

    24. [24]

      [24] Peng G, Zhang L L, Yang X L, et al. J. Alloys Compd., 2013,570(5):1-6

    25. [25]

      [25] Zhao Y, Li J, Wang N, et al. J. Mater. Chem., 2012,22: 18797-18800

    26. [26]

      [26] Zhou H, Lou F, Vullum P E, et al. Nanotechnology, 2013,24 (43):435703-435713

    27. [27]

      [27] Nishimura S I, Hayase S, Kanno R, et al. J. Am. Chem. Soc., 2008,130(40):13212-13213

    28. [28]

      [28] Li D, Zhou H, Honma I, et al. Chem. Commun., 2005,41: 5187-5189

    29. [29]

      [29] Li D, Zhou H, Honma I. Nat. Mater., 2004,3:65-72

    30. [30]

      [30] Luo Y, Xu X, Zhang Y, et al. Adv. Energy Mater., 2014,14: 400107

    31. [31]

      [31] Li D L, Yong H T H, Xie R, et al. RSC Adv., 2014,4: 35541-35545

    32. [32]

      [32] Huang H, Yin S C, Kerr T, et al. Adv. Mater., 2002,14(21): 1525-1528

    33. [33]

      [33] Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc., 2003,125(2):326-327

    34. [34]

      [34] Li D L, Xie R, Tian M, et al. Nanoscale, 2014,6:3302-3308

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(0)
  • Abstract views(354)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return