Citation: GAO Li-Guo, SONG Xiao-Li, CAO Wei, LÜ Ling-Ling. Luteolin and Luteolin-Cr(Ⅲ) Complexes: Antioxidation and Reaction Mechanism with Hydrogen Peroxide Radical[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2229-2235. doi: 10.11862/CJIC.2015.275 shu

Luteolin and Luteolin-Cr(Ⅲ) Complexes: Antioxidation and Reaction Mechanism with Hydrogen Peroxide Radical

  • Corresponding author: GAO Li-Guo, 
  • Received Date: 3 May 2015
    Available Online: 29 August 2015

    Fund Project: 国家自然科学基金(No.31272510) (No.31272510)陕西省榆林市科技计划(No.2013zx02,2014cxy-08)资助项目。 (No.2013zx02,2014cxy-08)

  • Density functional theory(DFT) calculations have been performed to explore the molecular structure and O-H bond dissociation enthalpy(BDE) of luteolin and luteolin-Cr(Ⅲ) complex. Possible antioxidation mechanism between hydrogen peroxide radical·O2H and luteolin has been discussed, and the hydrogen atom transferring mechanism has been analyzed using the natural bond orbital (NBO) theory. Besides the theoretical studies, the experiment was performed to revise the theoretical peroration. According to the experiment, the complex has a higher ·O2H radical scavenging activity than that of luteolin which agrees with that by theoretical studies.
  • 加载中
    1. [1]

      [1] Shimoi K, Masuda S, Kinae N, et al. Carcinogenesis, 1994, 15:2669-2672

    2. [2]

      [2] Yasukawa K, Takido M, Nakagawa S, et al. Chem. Pharm. Bull., 1989,37:1071-1073

    3. [3]

      [3] Yamamoto H, Sakakibara J, Sekiya K, et al. J. Agric. Food Chem., 1998,46:862-865

    4. [4]

      [4] Ferriola P C, Cody V, Middleton Jr E. Biochem. Pharmacol., 1989,38:1617-1624

    5. [5]

      [5] Ni Y N, Du S, Kokot S. Anal. Chim. Acta, 2007,584:19-27

    6. [6]

      [6] Tan J, Wang B C, Zhu L C. Colloids Surf. B: Biointerfaces, 2007,55:149-152

    7. [7]

      [7] Cornard J P, Dangleterre L, Lapouge C. J. Phys. Chem. A, 2005,109:10044-10051

    8. [8]

      [8] Souza R F V D, Giovani W F D. Redox Rep., 2004,9:97- 104

    9. [9]

      [9] Leopoldini M, Russo N, Chiodo S, et al. J. Agric. Food Chem., 2006,54:6343-6351

    10. [10]

      [10] Gao L G, Wang H, Song X L, et al. J. Mol. Struct., 2013, 1034:386-391

    11. [11]

      [11] Ruch R J, Cheng S J, Klaunig J E. Carcinogenesis, 1989,10: 1003-1008

    12. [12]

      [12] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2010.

    13. [13]

      [13] Becke A D. J. Chem. Phys., 1993,98:1372-1377

    14. [14]

      [14] Stephens P J, Devlin F J, Chablowski C F, et al. J. Phys. Chem., 1994,98:11623-11627

    15. [15]

      [15] Cimas A, Rayón V M, Aschi M, et al. J. Chem. Phys., 2005, 123:114312-114323

    16. [16]

      [16] Gao L G, Song X L, Wang Y C, et al. Comput. Theor. Chem., 2011,968:31-38

    17. [17]

      [17] Glendening E D, Badenhoop J K, Reed A E, et al. NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.

    18. [18]

      [18] Chiodo S G, Leopoldini M, Russo N, et al. Phys. Chem. Chem. Phys., 2010,12:7662-7670

    19. [19]

      [19] Guzman R, Santiago C, Sanchez M. J. Mol. Struct., 2009, 935:110-114

    20. [20]

      [20] Chen W J, Sun S F, Cao W, et al. J. Mol. Struct., 2009,918: 194-197

    21. [21]

      [21] Jun X H, Shu M W, Rong L F, et al. Acta Phys. Chim. Sin., 2013,29:1421-1432

    22. [22]

      [22] Trouillas P, Fagnere C, Lazzaroni R, et al. Food Chem., 2004,88:571-582

    23. [23]

      [23] Wright J S, Johnson E R, DiLabio G A. J. Am. Chem. Soc., 2001,123:1173-1183

    24. [24]

      [24] Foster J P, Weinhold F. J. Am. Chem. Soc., 1980,102:7211- 7218

    25. [25]

      [25] Reed A E, Weinstock R B, Weinhold F. J. Chem. Phys., 1985,83:735-746

    26. [26]

      [26] Khaliullin R, Bell A T, Head-Gordon M. Chem. Eur. J., 2009,15:851-855

    27. [27]

      [27] Hobza P, Havlas Z. Chem. Rev., 2000,100:4253-4264

    28. [28]

      [28] Paul B K, Mahanta S, Singh R B, et al. J. Phys. Chem. A, 2010,114:2618-2627

    29. [29]

      [29] Krishanan A R, Saleem H, Subhashandrabose S, et al. Spectrochim. Acta A, 2011,78:582-589

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(0)
  • Abstract views(432)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return