Citation:
YANG Xu, LI Xiao-Long, HU Cai-Hua, SHA Zuo-Liang, YANG Li-Bin. Photocatalytic Water Splitting for Hydrogen Evolution over CuO/TiO2 with Ethylene Glycol as Electron Donor[J]. Chinese Journal of Inorganic Chemistry,
;2015, (11): 2167-2173.
doi:
10.11862/CJIC.2015.234
-
Nanosized TiO2 with deposited CuO(CuO/TiO2) photocatalysts were synthesized by impregnation and thermal decomposition method. The photocatalytic water splitting for hydrogen evolution was investigated over CuO/TiO2 with ethylene glycol as an electron donor. The effect of CuO loading, irradiation time, photocatalyst amount, initial concentration of the ethylene glycol solution on the reaction rate of photocatalytic hydrogen evolution was studied. The possible reaction mechanism was also discussed. The results show that the optimal hydrogen evolution rate reachs 604.5 μmol·h-1·g-1 under irradiation of 300 W Xe lamp. The CuO/TiO2 photocatalyst possesses enhanced optical absorption property, which can help to reduce the electron-hole recombination because the photo-generated electrons in TiO2 can be readily transferred to CuO. We suggest that ethylene glycol as electron donor may be further oxidized via glycolic acid.
-
-
-
[1]
[1] Shipway A N, Katz E, Willner I. Phys. Chem. Chem. Phys., 2000(1):18-52
-
[2]
[2] Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010,110: 6530-6570
-
[3]
[3] SU Ya-Ling(苏雅玲), ZHANG Fei-Bai(张飞白), DU Ying- Xun(杜瑛珣), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2009,25(11):1994-2002
-
[4]
[4] Le T T, Akhtar M S, Park D M, et al. Appl. Catal. B: Environ., 2012,111-112:397-401
-
[5]
[5] Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001,293: 269-271
-
[6]
[6] Jang J S, Kim H G, Joshi U A, et al. Int. J. Hydrogen Energy, 2008,33:5975-5980
-
[7]
[7] Kim J C, Choi J, Lee Y B, et al. Chem. Commun., 2006,48: 5024-5026
-
[8]
[8] Fan X R, Lin B Zh, Liu H, et al. Int. J. Hydrogen Energy, 2013,38:832-839
-
[9]
[9] Alex S, Santhosh U, Das S. J. Photochem. Photobiol. A: Chem., 2005,172(1):63-71
-
[10]
[10] Kandiel T A, Ismaila A A,Bahnemann D W. Phys. Chem. Chem. Phys., 2011,13:20155-20161
-
[11]
[11] GAN Yu-Qin(甘玉琴), ZOU Cui-E(邹翠娥), YANG Ping(杨 平), et al. Petroch. Technol.(石油化工), 2005,34(6):578-581
-
[12]
[12] WANG Zhu-Mei(王竹梅), LI Yue-Ming(李月明), YANG Xiao-Jing(杨小静), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2007,23:225-230
-
[13]
[13] HAN Yu-Xiang(韩玉香), SHAO Yun(邵芸), WAN Hai-Qin (万海勤), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):481-486
-
[14]
[14] Xu S, Sun D D. Int. J. Hydrogen Energy, 2009,34:6096-6104
-
[15]
[15] Xu S P, Ng J W, Zhang X W, et al. Int. J. Hydrogen Energy, 2010,35:5254-5261
-
[16]
[16] Yu J G, Hai Y, Jaroniec M. J. Colloid Interface Sci., 2011, 357:223-228
-
[17]
[17] Choi H J, Kang M. Int. J. Hydrogen Energy, 2007,32:3841- 3848
-
[18]
[18] JIANG Shao-Feng(蒋少锋), YAO Qian-Ru(姚倩茹), GAO Bi-Fen(高碧芬), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2015,31(3):514-520
-
[19]
[19] Khemthong P, Photai P, Grisdanurak N. Int. J. Hydrogen Energy, 2013,38:15992-16001
-
[20]
[20] Schwarz P F, Turro N J, Bossmann S H, et al. J. Phys. Chem. B, 1997,101:7127-7134
-
[21]
[21] TU Sheng-Hui(涂盛辉), WU Hui(巫辉), LIANG Hai-Ying (梁海营), et al. Chin. J. Chem. Eng.(化工学报), 2013,64(9): 3228-3234
-
[22]
[22] Michael R H, Scot T M, Wonyong Choi, et al. Chem. Rev., 1995,95:69-96
-
[23]
[23] LI Min(李敏), LI Yue-Xiang(李越湘), PENG Shao-Qin(彭绍 琴), et al. J. Mol. Catal.(China)(分子催化), 2008,22(2):166- 171
-
[1]
-
-
-
[1]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[3]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[6]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[7]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[8]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[9]
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
-
[10]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[11]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[12]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
-
[13]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[14]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135
-
[15]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[16]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[19]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[20]
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1190)
- HTML views(233)
Login In
DownLoad: