Citation: BAI Ya-Dong, ZHENG Jia-Jun, FAN Bin-Bin. One Step Synthesis of SAPO-34 Molecular with Hierarchical Porosity[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1505-1510. doi: 10.11862/CJIC.2015.225 shu

One Step Synthesis of SAPO-34 Molecular with Hierarchical Porosity

  • Corresponding author: FAN Bin-Bin, 
  • Received Date: 10 December 2014
    Available Online: 10 June 2015

    Fund Project: 国家自然科学基金项目(No.21371129,21376157,21246003) (No.21371129,21376157,21246003)中国石油化工股份有限公司(No.111110)项目资助。 (No.111110)

  • Meso-SAPO-34 molecular sieve was synthesized with TPOAC and colloidal silica as the silica source, the total surface area is up to 649 m2·g-1. The ratio of TPOAC and silica sol was investigated, which affects external surface area of SAPO-34. The structure was determined by XRD, BET, SEM, NH3-TPD, results show that mesoporous SAPO-34 external surface area can be adjusted, more the defect position crystal appearance, reduce the amount of strong acid weak acid, a weak trend.Under the condition of the ration of TPOAC and silica sol was 3:2, reaction time was 10 days and the ratio of nAl2O3:nP2O5:nSi:nTEAOH:nH2O=1:0.9:0.5:2:60, the external surface area of synthetic mesoporous SAPO-34 reaches the maximum, the value is 100 m2·g-1.
  • 加载中
    1. [1]

      [1] LIU Hong-Xing(刘红星), XIE Zai-Ku(谢在库), ZHANG Cheng-Fang(张成芳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2003,19(3):240-246

    2. [2]

      [2] Anderson M W, Sulikowski B, Barrie P, et al. J. Phys. Chem., 1990,94:2730-2734

    3. [3]

      [3] Parakash A M, Unnikrishnan S. J. Chem. Soc. Faraday Trans., 1994,90(15):2291-2296

    4. [4]

      [4] Qi G, Xie Z, Yang W, et al. Fuel Process. Technol., 2007, 88:437-441

    5. [5]

      [5] LIU Guang-Yu(刘广宇), TIAN Peng(田鹏), LIU Zhong-Min (刘中民). Prog. Chem.(化学进展), 2010,22:1531-1537

    6. [6]

      [6] Valiullin R, Krger J, Cho K, et al. Microporous Mesoporous Mater., 2011,142(1):236-244

    7. [7]

      [7] Askari, Sima Halladj, Rouein, et al. Mater. Res. Bull., 2013, 48(5):1851-1856

    8. [8]

      [8] Sun Q, Ma Y, Wang N, et al. J. Mater. Chem. A, 2014,2(42):17828-17839

    9. [9]

      [9] Möller K, Bein T. Chem. Soc. Rev., 2013,42(9):3689-3707

    10. [10]

      [10] Verboekend D, Perez-Ramirez J. Chem. Eur. J., 2011,17(4):1137-1147

    11. [11]

      [11] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006,16(22):2121-2131

    12. [12]

      [12] Jacobsen C J H, Madsen C, Houzvicka J, et al. J. Am. Chem. Soc., 2000,122(29):7116-7117

    13. [13]

      [13] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003,107(40):10974-10976

    14. [14]

      [14] Wang L, Zhang Z, Yin C, et al. Microporous Mesoporous Mater., 2010,131(1):58-67

    15. [15]

      [15] Wang H, Pinnavaia T J. Angew. Chem. Int. Ed., 2006,45(45):7603-7606

    16. [16]

      [16] Xue Z, Ma J, Hao W, et al. J. Mater. Chem., 2012,22(6):2532-2538

    17. [17]

      [17] Franz S, Silvia P, Eike B, et al. Microporous Mesoporous Mater., 2012,164:214-221

    18. [18]

      [18] Singh A, Yadav R, Sakthivel A. Microporous Mesoporous Mater., 2013,181(15):166-174

    19. [19]

      [19] Yang S, Kim J, Chae H, et al. Mater. Res. Bull., 2012,47:3888-3892

    20. [20]

      [20] CHEN Lu(陈璐), WANG Run-Wei(王润伟), DING Shuang (丁双), et al. Chem. J. Chinese Universities(高等学校化学学报), 2011,31(9):1693-1693

    21. [21]

      [21] Kim J, Kim J, Yang S, et al. Fuel, 2013,108:515-520

    22. [22]

      [22] Wu L, Hensen E J M. Catal. Today, 2014,235:160-168

    23. [23]

      [23] Sun Q, Wang N, Xi D, et al. Chem. Commun., 2014,50(49):6502-6505

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    19. [19]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    20. [20]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

Metrics
  • PDF Downloads(0)
  • Abstract views(239)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return