Citation: YE Qin, XIANG Jun, LI Jia-Le, LIU Min, XU Jia-Huan, SHEN Xiang-Qian. Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1296-1304. doi: 10.11862/CJIC.2015.204 shu

Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers

  • Corresponding author: XIANG Jun,  XU Jia-Huan, 
  • Received Date: 14 April 2015
    Available Online: 29 May 2015

    Fund Project: 国家自然科学基金(No.11204108) (No.11204108)中国博士后科学基金(No.2013M540418) (No.2013M540418)江苏省博士后科研资助计划(No.1301055B)资助项目。 (No.1301055B)

  • (1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3 (known simply as (1-x)NZFO-(x)PZT, x=0.1, 0.2, 0.3, 0.4, and 0.5) magnetoelectric composite nanofibers have been successfully fabricated using the electrospinning method. The effects of PZT content on structures, electromagnetic characteristics and microwave absorption properties of the resultant products have been investigated in detail. It is found that all the as-prepared composites nanofibers are composed of both spinel-structured NZFO and perovskite-structured PZT phases. The appropriate incorporation of PZT phase in the composite nanofibers can improve the electromagnetic impedance matching and attenuation characteristics of the corresponding microwave absorbing coatings due to the synergistic effects between magnetic loss of NZFO and dielectric loss of PZT and the enhanced interfacial effects, and consequently boost their microwave absorption performances. The (1-x)NZFO-(x)PZT composite nanofiber/silicone microwave absorbing coatings with x=0.3 and 0.4 exhibit the strongest microwave absorption ability in the low- and high-frequency ranges, respectively. When the coating thickness is between 2.5 and 5.0 mm, the minimum reflection loss (RL) value of the x=0.3 sample is -77.2 dB at 6.1 GHz and the effective absorption bandwidth with RL below -10 dB reaches 11.2 GHz covering the 2.8~12.9 and 16.9~18 GHz frequency ranges. While for x=0.4 sample, an optimal RL value of -37.6 dB is observed at 18 GHz and the effective absorption bandwidth is up to 12.5 GHz ranging from 3.3 to 12.5 and 14.7 to 18 GHz.
  • 加载中
    1. [1]

      [1] Xia T, Zhang C, Oyler N A, et al. Adv. Mater., 2013, 25:6905-6910

    2. [2]

      [2] CHEN Xue-Guan(陈雪刚), YE Ying(叶瑛), CHEN Ji-Peng (程继鹏). J. Inorg. Mater.(无机材料学报), 2011, 26(5):449-457

    3. [3]

      [3] Zhang X F, Guo J J, Qin G W. Appl. Phys. Lett., 2014, 104: 252404

    4. [4]

      [4] Xiang J, Li J L, Zhang X H, et al. J. Mater. Chem. A, 2014, 2:16905-16914

    5. [5]

      [5] Jiang J J, Li D, Geng D Y, et al. Nanoscale, 2014, 6:3967-3971

    6. [6]

      [6] Vinayasree S, Soloman M A, Sunny V, et al. Compos. Sci. Technol., 2013, 82:69-75

    7. [7]

      [7] Qiu J, Qiu T T. Carbon, 2015, 81:20-28

    8. [8]

      [8] Liu J W, Che R C, Chen H J, et al. Small, 2012, 8:1214-1221

    9. [9]

      [9] XIANG Jun(向军), ZHANG Xiong-Hui(张雄辉), YE Qin(叶芹), et al. Chem. J. Chinese Universities(高等学校化学学报), 2014, 35(7):1379-1387

    10. [10]

      [10] Ramesh R, Spaldin N A. Nature Mater., 2007, 6:21-29

    11. [11]

      [11] Nan C W, Bichurin M I, Dong S X, et al. J. Appl. Phys., 2008, 103:031101

    12. [12]

      [12] Ma J, Hu J M, Li Z, et al. Adv. Mater., 2011, 23:1062-1087

    13. [13]

      [13] Mandal A, Das C K. J. Electron. Mater., 2013, 42:121-128

    14. [14]

      [14] Mandal A, Das C K. J. Appl. Ploym. Sci., 2014, 131:39926

    15. [15]

      [15] Liu J R, Itoh M, Terada M, et al. Appl. Phys. Lett., 2007, 91:093101

    16. [16]

      [16] Huang X G, Zhang J, Xiao S R, et al. J. Am Ceram. Soc., 2014, 97:1363-1366

    17. [17]

      [17] Yang J, Zhang J, Liang C Y, et al. ACS Appl. Mater. Interfaces, 2013, 5:7146-7151

    18. [18]

      [18] LIU Gu(刘顾), WANG Liu-Ying(汪刘应), CHEN Jian-Liang (程建良), et al. J. Mater. Eng.(材料工程), 2015, 43(1):104-112

    19. [19]

      [19] Wu H, Pan W, Lin D D, et al. J. Adv. Ceram., 2012, 1(1):2-23

    20. [20]

      [20] Wang Z L, Liu X J, Lv M F, et al. J. Phys. Chem. C, 2008, 112:15171-15175

    21. [21]

      [21] Albuquerque A S, Ardisson J D, Macedo W A A, et al. J. Appl. Phys., 2000, 87:4352-4357

    22. [22]

      [22] Yao D S, Ge S H, Zhou X Y, et al. J. Appl. Phys., 2008, 104:013902

    23. [23]

      [23] Guan P F, Zhang X F, Guo J J. Appl. Phys. Lett., 2012, 101: 153108

    24. [24]

      [24] Qing Y C, Zhou W C, Luo F, et al. J. Magn. Magn. Mater., 2011, 323:600-606

    25. [25]

      [25] Shang R X, Zhang Y, Yan L G, et al. J. Phys. D: Appl. Phys., 2014, 47:065001

    26. [26]

      [26] Liu X G, Ou Z Q, Geng D Y, et al. Carbon, 2010, 48:891-897

    27. [27]

      [27] REN Li(任丽), ZHANG Rong-Fen(张荣芬), LI Zheng(李铮), et al. Electro. Compon. Mater.(电子元件与材料), 2014, 33 (7):23-28

    28. [28]

      [28] Cao J, Fu W Y, Yang H B, et al. J. Phys. Chem. B, 2009, 113:4642-4647

    29. [29]

      [29] Wang G Q, Ma L X, Chang Y F, et al. Appl. Surf. Sci., 2012, 258:3962-3966

    30. [30]

      [30] Kong L B, Li Z W, Liu L, et al. Int. Mater. Rev., 2013, 58: 203-259

    31. [31]

      [31] Chu Y Q, Zhang B, Xiang J. Adv. Mater. Res., 2013, 631-632:429-433

    32. [32]

      [32] Zhu Y F, Zhang L, Natsuki T, et al. ACS Appl. Mater. Interfaces, 2012, 4:2101-2106

    33. [33]

      [33] Sun G B, Dong B X, Cao M H, et al. Chem. Mater., 2011, 23:1587-1593

    34. [34]

      [34] Meng X G, Wan Y Z, Li Q Y, et al. Appl. Surf. Sci., 2011, 257:10808-10814

    35. [35]

      [35] Ma Z, Cao C T, Liu Q F, et al. Chin. Phys. Lett., 2012, 29: 038401

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    13. [13]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    14. [14]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(0)
  • Abstract views(281)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return