Citation:
LU Yong-Juan, JIA Jun-Hong. Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays[J]. Chinese Journal of Inorganic Chemistry,
;2015, (6): 1091-1098.
doi:
10.11862/CJIC.2015.155
-
Hydrothermally synthesized TiO2 nanorod arrays on FTO glass substrates were functionalized with uniform Bi2S3 quantum dots by CBD method combined with self-assembled monolayers(SAMs). The surface morphology, structure, optical and photoelectrochemical behaviors of the TiO2/Bi2S3 nanorod arrays are considered. The results that uniform Bi2S3 thin films were deposited on the surface of TiO2 nanorods modified by APTS SAMs. The key of the technology is that the APTS SAM possessing -NH2 functional groups can be employed to control nucleation. Moreover, the deposition time of Bi2S3 thin film plays a key role in the visible light absorption as well as photoelectric response of TiO2/Bi2S3 nanorod arrays. It reveals that, with the increase of the deposition time, the Jsc of composite thin film first increased and then decreased, and a Jsc maximum value of 0.13 mA·cm-2 reached at 20 min deposition of Bi2S3. The increase of Jsc for the initial deposition time could be interpreted as the result of enhanced absorption in the visible light range. Further increase the deposition time resulted in an obvious decrease in Jsc. This phenomenon might be attributed to Bi2S3 overloading on the surface of TiO2 resulted in aggregations and conglomerations, leading to more surface defects and recombination of photoexcited carrier.
-
-
-
[1]
[1] Falaras P, Gratzel M, Nazeemddin M, et al. J. Electrochem. Soc., 1993,140:92-94
-
[2]
[2] Barbe C J, Arendse F, Comte P. J. Am. Ceram. Soc., 1997, 80:3157-3171
-
[3]
[3] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218
-
[4]
[4] Kai Z, Nathan R N, Miedaner A, et al. Nano Lett., 2007,7: 69-74
-
[5]
[5] Zhao J, Wang X, Chen R. Mater. Lett., 2005,59:2329-2332
-
[6]
[6] Adachi M, Murata Y, Okada I, et al. J. Electrochem. Soc., 2003,150:G488-G493
-
[7]
[7] Paulose M, Shankar K, Varghese O K, et al. Nanotechnology, 2006,17:1446-1448
-
[8]
[8] Paulose M, Varghese O K, Mor G K, et al. Nanotechnology, 2006,17:398-402
-
[9]
[9] Adachi M, Murata Y, Harada M, et al. Chem. Lett., 2000,29: 942-943
-
[10]
[10] Chu S Z, Inoue S, Wada K, et al. J. Phys. Chem. B, 2003, 107:6586-6589
-
[11]
[11] Zhang Z, Shimizu T, Senz S. Adv. Mater., 2009,21:2824-2828
-
[12]
[12] Michailowski A, Almlwai D, Cheng G S, et al. Chem. Phys. Lett., 2001,349:1-5
-
[13]
[13] Wu J J, Yu C C. J. Phys. Chem. B, 2004,108:3377-3379
-
[14]
[14] Feng X J, Shankar K, Varghese O K, et al. Nano Lett., 2008,8:3781-3786
-
[15]
[15] Liu B, Aydil E S. J. Am. Chem. Soc., 2009,131:3985-3990
-
[16]
[16] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393
-
[17]
[17] LIU Fei-La(刘非拉), XIAO Peng(肖鹏), ZHOU Ming(周明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5): 861-872
-
[18]
[18] Nozik A J, Beard M C, Luther J M, et al. Chem. Rev., 2010, 110:6873-6890
-
[19]
[19] Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994,98:3183-3188
-
[20]
[20] LI Jing(李静). Thesis for the Master of Hubei University(湖 北大学硕士学位论文), 2013.
-
[21]
[21] Peter L M, Waggett J P, et al. J. Phys. Chem. B, 2003,107: 8378-8381
-
[22]
[22] Roemermahler J, Bremer F J. Adv. Mater., 1995,7:7-9
-
[23]
[23] Aizenberg J, Black A J, Whitesides G H. J. Am. Chem. Soc., 1999,121:4500-4509
-
[24]
[24] Liufu S, Chen L D. J. Phys. Chem. C, 2008,112:12085-12088
-
[25]
[25] Liufu S, Chen L D, et al. J. Phys. Chem. B, 2006,110:24054 -24061
-
[26]
[26] Lu Y, Jia J, Yi G. CrystEngComm, 2012,14:3433-3440
-
[27]
[27] Cao C, Hu C, Wang X. Sensor Actuat B, 2011,156:114-119
-
[28]
[28] Coughlin K M, Nevins J S, Watson D F. ACS Appl. Mater. Interfaces, 2013,5:8649-8654
-
[29]
[29] ZHU Gang-Qiang(朱刚强), HUANG Xi-Jin(黄锡金), FEN Bo(冯波), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2041-2046
-
[30]
[30] Wang H, McNellis E R, Kinge S, et al. Nano Lett., 2013,13: 5311-5315
-
[31]
[31] Ardalan P, Brennan T P, Bakke J R, et al. ACS Nano, 2011,5: 1495-1504
-
[32]
[32] Cai F G, Yang F, Jia Y F, et al. J. Mater. Sci., 2013,48: 6001-6007
-
[33]
[33] Nasr C, Hotchandani S, Kim W Y, et al. J. Phys. Chem. B, 1997,101:7480-7487
-
[34]
[34] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002,4: 198-203
-
[35]
[35] Yang L, Luo S, Liu R, et al. J. Phys. Chem. C, 2010,114: 4783-4789
-
[1]
-
-
-
[1]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[2]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[3]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[4]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[5]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[6]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[7]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[10]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[11]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[12]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[13]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[14]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[15]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[16]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[17]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[18]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[20]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(381)
- HTML views(64)