Citation: LU Yong-Juan, JIA Jun-Hong. Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1091-1098. doi: 10.11862/CJIC.2015.155 shu

Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays

  • Corresponding author: LU Yong-Juan, 
  • Received Date: 14 October 2014
    Available Online: 11 March 2015

    Fund Project: 中央高校基本业务费专项资金项目(No.31920140083) (No.31920140083)引进人才教学科研启动费(No.xbmuyjrc1201204)资助项目。 (No.xbmuyjrc1201204)

  • Hydrothermally synthesized TiO2 nanorod arrays on FTO glass substrates were functionalized with uniform Bi2S3 quantum dots by CBD method combined with self-assembled monolayers(SAMs). The surface morphology, structure, optical and photoelectrochemical behaviors of the TiO2/Bi2S3 nanorod arrays are considered. The results that uniform Bi2S3 thin films were deposited on the surface of TiO2 nanorods modified by APTS SAMs. The key of the technology is that the APTS SAM possessing -NH2 functional groups can be employed to control nucleation. Moreover, the deposition time of Bi2S3 thin film plays a key role in the visible light absorption as well as photoelectric response of TiO2/Bi2S3 nanorod arrays. It reveals that, with the increase of the deposition time, the Jsc of composite thin film first increased and then decreased, and a Jsc maximum value of 0.13 mA·cm-2 reached at 20 min deposition of Bi2S3. The increase of Jsc for the initial deposition time could be interpreted as the result of enhanced absorption in the visible light range. Further increase the deposition time resulted in an obvious decrease in Jsc. This phenomenon might be attributed to Bi2S3 overloading on the surface of TiO2 resulted in aggregations and conglomerations, leading to more surface defects and recombination of photoexcited carrier.
  • 加载中
    1. [1]

      [1] Falaras P, Gratzel M, Nazeemddin M, et al. J. Electrochem. Soc., 1993,140:92-94

    2. [2]

      [2] Barbe C J, Arendse F, Comte P. J. Am. Ceram. Soc., 1997, 80:3157-3171

    3. [3]

      [3] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218

    4. [4]

      [4] Kai Z, Nathan R N, Miedaner A, et al. Nano Lett., 2007,7: 69-74

    5. [5]

      [5] Zhao J, Wang X, Chen R. Mater. Lett., 2005,59:2329-2332

    6. [6]

      [6] Adachi M, Murata Y, Okada I, et al. J. Electrochem. Soc., 2003,150:G488-G493

    7. [7]

      [7] Paulose M, Shankar K, Varghese O K, et al. Nanotechnology, 2006,17:1446-1448

    8. [8]

      [8] Paulose M, Varghese O K, Mor G K, et al. Nanotechnology, 2006,17:398-402

    9. [9]

      [9] Adachi M, Murata Y, Harada M, et al. Chem. Lett., 2000,29: 942-943

    10. [10]

      [10] Chu S Z, Inoue S, Wada K, et al. J. Phys. Chem. B, 2003, 107:6586-6589

    11. [11]

      [11] Zhang Z, Shimizu T, Senz S. Adv. Mater., 2009,21:2824-2828

    12. [12]

      [12] Michailowski A, Almlwai D, Cheng G S, et al. Chem. Phys. Lett., 2001,349:1-5

    13. [13]

      [13] Wu J J, Yu C C. J. Phys. Chem. B, 2004,108:3377-3379

    14. [14]

      [14] Feng X J, Shankar K, Varghese O K, et al. Nano Lett., 2008,8:3781-3786

    15. [15]

      [15] Liu B, Aydil E S. J. Am. Chem. Soc., 2009,131:3985-3990

    16. [16]

      [16] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393

    17. [17]

      [17] LIU Fei-La(刘非拉), XIAO Peng(肖鹏), ZHOU Ming(周明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5): 861-872

    18. [18]

      [18] Nozik A J, Beard M C, Luther J M, et al. Chem. Rev., 2010, 110:6873-6890

    19. [19]

      [19] Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994,98:3183-3188

    20. [20]

      [20] LI Jing(李静). Thesis for the Master of Hubei University(湖 北大学硕士学位论文), 2013.

    21. [21]

      [21] Peter L M, Waggett J P, et al. J. Phys. Chem. B, 2003,107: 8378-8381

    22. [22]

      [22] Roemermahler J, Bremer F J. Adv. Mater., 1995,7:7-9

    23. [23]

      [23] Aizenberg J, Black A J, Whitesides G H. J. Am. Chem. Soc., 1999,121:4500-4509

    24. [24]

      [24] Liufu S, Chen L D. J. Phys. Chem. C, 2008,112:12085-12088

    25. [25]

      [25] Liufu S, Chen L D, et al. J. Phys. Chem. B, 2006,110:24054 -24061

    26. [26]

      [26] Lu Y, Jia J, Yi G. CrystEngComm, 2012,14:3433-3440

    27. [27]

      [27] Cao C, Hu C, Wang X. Sensor Actuat B, 2011,156:114-119

    28. [28]

      [28] Coughlin K M, Nevins J S, Watson D F. ACS Appl. Mater. Interfaces, 2013,5:8649-8654

    29. [29]

      [29] ZHU Gang-Qiang(朱刚强), HUANG Xi-Jin(黄锡金), FEN Bo(冯波), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2041-2046

    30. [30]

      [30] Wang H, McNellis E R, Kinge S, et al. Nano Lett., 2013,13: 5311-5315

    31. [31]

      [31] Ardalan P, Brennan T P, Bakke J R, et al. ACS Nano, 2011,5: 1495-1504

    32. [32]

      [32] Cai F G, Yang F, Jia Y F, et al. J. Mater. Sci., 2013,48: 6001-6007

    33. [33]

      [33] Nasr C, Hotchandani S, Kim W Y, et al. J. Phys. Chem. B, 1997,101:7480-7487

    34. [34]

      [34] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002,4: 198-203

    35. [35]

      [35] Yang L, Luo S, Liu R, et al. J. Phys. Chem. C, 2010,114: 4783-4789

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(0)
  • Abstract views(382)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return